[Paper] Dyna‑Q 강화학습을 위한 예측 안전 방패
강화 학습에 대한 안전 보증을 확보하는 것은 실제 작업에 적용 가능성을 달성하기 위한 주요 과제입니다. 안전 방패는 표준 강화 학습 에이전트에 추가적인 보호 계층을 제공하여, 에이전트가 환경과 상호 작용할 때 사전에 정의된 안전 제약을 위반하지 않도록 보장합니다. 이러한 방패는 일반적으로 사전 학습된 모델이나 런타임 검증 메커니즘을 활용하여, 위험한 행동이 실행되기 전에 이를 차단하거나 안전한 대체 행동으로 교체합니다. 이 접근 방식은 특히 안전이 중요한 로봇 공학, 자율 주행, 의료 및 산업 자동화와 같은 분야에서 유용합니다. 방패는 에이전트가 탐색 과정에서 발생할 수 있는 예기치 않은 위험을 최소화하면서도, 학습 효율성을 크게 저해하지 않도록 설계되어야 합니다. 핵심 아이디어는 다음과 같습니다. 1. **안전 제약 정의**: 환경에서 허용 가능한 행동 집합을 명시적으로 규정합니다. 2. **실시간 검증**: 에이전트가 선택한 행동이 안전 제약을 만족하는지 실시간으로 검사합니다. 3. **대체 행동 생성**: 안전 제약을 위반하는 경우, 안전한 대체 행동을 자동으로 생성하거나 기존 안전 정책에 따라 행동을 수정합니다. 4. **학습 통합**: 방패 메커니즘을 강화 학습 알고리즘에 통합하여, 에이전트가 안전한 행동을 지속적으로 학습하도록 유도합니다. 이러한 안전 방패는 강화 학습 시스템이 실제 세계에 적용될 때 발생할 수 있는 위험을 크게 감소시켜, 보다 신뢰할 수 있는 인공지능 솔루션을 구현하는 데 기여합니다.