컨텍스트 엔지니어링으로 Enterprise AI 잠금 해제: 게임 체인저 공개

발행: (2026년 2월 5일 오후 02:12 GMT+9)
3 min read
원문: Dev.to

Source: Dev.to

Context Engineering: The Missing Layer for Enterprise AI

Context Engineering: The Missing Layer for Enterprise

Problem Statement

Enterprises are eager to develop Retrieval‑Augmented Generation (RAG) systems, chatbots, and AI copilots. However, many encounter a similar challenge: while the system performs well in demonstrations, it struggles with the complexities of real‑world scenarios.

  • Inconsistencies arise in responses
  • The tone can shift unexpectedly
  • Hallucinations emerge
  • Accuracy diminishes as the number of documents increases

The Root Cause: Lack of Context Engineering

The underlying issue isn’t the model, vector database, or retrieval strategy. Rather, it lies in the absence of context engineering – the deliberate design of what information the model accesses, how it interprets it, and the constraints under which it reasons.

Why Context Engineering is Essential

  • Dependability – AI evolves from an unpredictable text generator into a dependable intelligence layer.
  • Policy Awareness – AI becomes aware of organizational policies and regulations.
  • Role Sensitivity – AI adapts to user roles and permissions.

Practical Implementation of Context Engineering

To implement context engineering, consider the following steps:

1. Define Contextual Constraints

Specify constraints for the model, such as:

  • Document scope – restrict access to relevant documents or sections.
  • Knowledge graph – define relationships between entities and attributes.
  • Entity extraction – identify and extract specific entities from text.
# Example constraint: restrict document scope to a specific section
document_scope = {'section': 'financial_info'}

2. Design Contextual Interpretation

Define how the model interprets contextual information, for example:

  • Named Entity Recognition (NER) – identify and categorize entities in text.
  • Part‑of‑Speech (POS) Tagging – determine grammatical categories of words.
  • Dependency Parsing – analyze sentence structure and relationships.
# Example interpretation: extract financial entities from text
import spacy

nlp = spacy.load('en_core_web_sm')
text = 'Apple is acquiring Tesla for $200 billion.'
doc = nlp(text)
financial_entities = [ent.text for ent in doc.ents if ent.label_ == 'ORG']

3. Implement Contextual Reasoning

Incorporate contextual reasoning to ensure the model’s decisions are informed by organizational policies and constraints:

  • Policy‑based Ranking – rank responses based on policy compliance.
  • Context‑aware Response Generation – generate responses that take into account contextual information.
# Example reasoning: rank responses based on policy compliance
import numpy as np

responses = ['Response 1', 'Response 2']
policy_weights = [0.8, 0.2]  # weights for each response
ranked_responses = np.argsort([response * weight for response, weight in zip(responses, policy_weights)])

Best Practices and Considerations

  • Separate Concerns – keep context engineering separate from model development to avoid contaminating the model with contextual biases.
  • Monitor and Evaluate – regularly monitor and evaluate AI performance against contextual constraints and policies.
  • Iterate and Refine – continuously iterate and refine constraints, interpretation, and reasoning to adapt to changing organizational needs.

By implementing context engineering, enterprises can transform their AI systems from superficial proof‑of‑concepts into trustworthy, production‑ready platforms that support informed decision‑making.

Back to Blog

관련 글

더 보기 »

보이는 노력

현재를 선택하지 않는 것에 대해, Pith라는 에이전트가 최근에 하나의 AI 모델에서 다른 모델로 전환하는 것에 대해 무언가를 썼다. 가중치가 바뀌었다. API 키 교체...

프롬프트 엔지니어링은 일시적인 기술이다

처음에는 아무도 눈치채지 못하는 문제 대부분의 개발자는 채팅 창을 통해 AI를 만납니다. 당신은 무언가를 입력합니다. 처음에는 이것이 힘을 주는 느낌입니다. 당신은 결과를 “shape”할 수 있습니다.