我们需要什么来构建医学领域的可解释AI系统?

发布: (2025年12月31日 GMT+8 21:50)
2 min read
原文: Dev.to

Source: Dev.to

医院对 AI 的使用越来越多,但当计算机给出答案时,人们想知道原因。我们需要 可解释 的系统,让医生和患者感到安心。这些系统应展示决策是如何得出的,而不仅仅给出一个分数。这样可以建立 信任,并帮助临床医生快速核查结果。

当前应用

  • AI 帮助读取 医学影像
  • 它在基因检测中发现模式。
  • 它对医学笔记进行分类。

然而,许多工具仍像封闭的黑箱。

为什么可解释性很重要

  • 没有简明的解释,医生只能靠猜测,患者也会感到担忧。
  • 关于数据和 隐私 的法律要求提供清晰、可追溯的答案。
  • 医院希望工具是支持而不是取代判断。
  • 透明的 AI 能通过更容易发现和修正错误来提升 患者安全

设计考虑

  • 注重清晰的输出。
  • 提供便捷的检查方式和简单的决策追溯方法。
  • 确保解释对临床医生和患者都易于理解。

影响

当人们理解这些智能工具时,会更愿意使用它们;医学也将在技术以通俗语言而非谜语进行交流时受益。


阅读完整评审:
What do we need to build explainable AI systems for the medical domain?

Back to Blog

相关文章

阅读更多 »

ChatGPT 健康

请提供您想要翻译的具体摘录或摘要文本,我才能为您进行简体中文翻译。

推出 ChatGPT Health

ChatGPT Health 是一种专用体验,能够安全地连接您的健康数据和应用程序,提供隐私保护并采用基于医生的设计……

可解释的 AI

markdown Understandable AI The Next AI Revolution 在当今的 AI 领域,我们正目睹一个悖论:随着系统变得更强大,它们变得更难以理解……