时间序列炼金术:使用 Transformers 和 PyTorch Lightning 预测2小时后血糖趋势

发布: (2026年1月7日 GMT+8 14:50)
5 min read
原文: Dev.to

I’m happy to translate the article for you, but I’ll need the full text you’d like translated. Could you please paste the content (excluding the source line you’ve already provided) so I can convert it to Simplified Chinese while preserving the formatting and code blocks?

用于血糖预测的 Transformer 架构

graph TD
    A[InfluxDB: Raw CGM Data] --> B[Pandas: Feature Engineering]
    B --> C[Scikit-learn: Scalers & Windowing]
    C --> D[Transformer Encoder]
    D --> E[Self-Attention Layers]
    E --> F[Linear Projection Head]
    F --> G[2‑Hour Forecast: 24 Intervals]
    G --> H{Insight: Hypo/Hyper Alert}

模型摄取最近 6 小时的 CGM 数据(以 5 分钟采样率共 72 个点),并预测接下来的 2 小时(24 个点)。自注意力机制使网络能够对任何过去的观测进行加权——无论是 30 分钟前的慢跑还是两小时前的高碳水化合物餐——而不会出现 RNN/LSTM 常见的遗忘问题。

必需堆栈

ComponentReason
Python 3.10+现代语言特性
PyTorch Lightning零样板训练,多GPU支持
torch核心深度学习库
InfluxDB高吞吐量时序存储
pandas数据整理
scikit‑learn缩放与窗口工具
influxdb‑clientInfluxDB 的 Python API

从 InfluxDB 获取 CGM 数据

import pandas as pd
from influxdb_client import InfluxDBClient

def fetch_cgm_data(bucket: str, org: str, token: str, url: str) -> pd.DataFrame:
    client = InfluxDBClient(url=url, token=token, org=org)
    query = f'''
    from(bucket: "{bucket}")
      |> range(start: -7d)
      |> filter(fn: (r) => r["_measurement"] == "glucose_level")
      |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value")
    '''
    df = client.query_api().query_data_frame(query)
    df['_time'] = pd.to_datetime(df['_time'])
    return df.set_index('_time')

# Example usage:
# df = fetch_cgm_data("health_metrics", "my_org", "SECRET_TOKEN", "http://localhost:8086")

准备数据

from sklearn.preprocessing import StandardScaler

# Assume the raw glucose column is named 'glucose'
scaler = StandardScaler()
df['glucose_scaled'] = scaler.fit_transform(df[['glucose']])

标准化信号(≈ 0 ± 1)是必需的;原始 CGM 值范围为 40 至 400 mg/dL,可能会导致训练不稳定。

模型定义

import torch
import torch.nn as nn
import pytorch_lightning as pl

class GlucoseTransformer(pl.LightningModule):
    def __init__(
        self,
        input_dim: int = 1,
        model_dim: int = 64,
        n_heads: int = 4,
        n_layers: int = 3,
        output_dim: int = 24,
    ):
        super().__init__()
        self.save_hyperparameters()

        # Project raw input to model dimension
        self.input_fc = nn.Linear(input_dim, model_dim)

        # Learnable positional encoding (max seq length = 500)
        self.pos_encoder = nn.Parameter(torch.zeros(1, 500, model_dim))

        encoder_layer = nn.TransformerEncoderLayer(
            d_model=model_dim, nhead=n_heads, batch_first=True
        )
        self.transformer_encoder = nn.TransformerEncoder(
            encoder_layer, num_layers=n_layers
        )

        # Map the final hidden state to the 24‑step forecast
        self.output_fc = nn.Linear(model_dim, output_dim)
        self.loss_fn = nn.MSELoss()

    def forward(self, x):
        # x: [batch, seq_len, features]
        x = self.input_fc(x) + self.pos_encoder[:, : x.size(1), :]
        x = self.transformer_encoder(x)
        # Use the last time step's representation for prediction
        return self.output_fc(x[:, -1, :])

    def training_step(self, batch, batch_idx):
        x, y = batch
        y_hat = self(x)
        loss = self.loss_fn(y_hat, y)
        self.log("train_loss", loss, prog_bar=True)
        return loss

    def configure_optimizers(self):
        return torch.optim.Adam(self.parameters(), lr=1e-3)

训练设置

# 实例化模型
model = GlucoseTransformer()

# Lightning 训练器(自动检测 GPU/CPU,演示使用单设备)
trainer = pl.Trainer(max_epochs=50, accelerator="auto", devices=1)

# 训练模型(将 `train_dataloader` 替换为你的 DataLoader)
# trainer.fit(model, train_dataloader)

生产考虑因素

  • 传感器漂移和缺失数据 – 在将批次输入模型之前,实现插值或掩码策略。
  • 不确定性估计 – 考虑分位回归或 Monte‑Carlo dropout 来提供置信区间。
  • 边缘部署 – 请参阅 WellAlly Tech 博客,了解符合 HIPAA 标准的流水线以及可穿戴设备上的实时推理。

接下来是什么?

  • 多模态输入 – 将碳水化合物摄入、步数或胰岛素剂量添加为额外列(input_dim > 1)。
  • 分位回归 – 预测下/上分位数(例如 5 % 和 95 %),以生成预测区间。
  • 持续学习 – 建立一个重新训练计划,将新流式的 CGM 数据纳入其中。

想更深入了解健康科技基础设施的扩展,请查看 WellAlly Blog(搜索 “digital health scaling” 和 “edge AI for wearables”)。

欢迎随意尝试,分享你的结果,共同塑造主动健康监测的未来!

Back to Blog

相关文章

阅读更多 »