๐Ÿ”ฅ_๊ณ ์„ฑ๋Šฅ_๋™์‹œ์„ฑ_ํ”„๋ ˆ์ž„์›Œํฌ_์„ ํƒ_๊ธฐ์ˆ _๊ฒฐ์ •[20251231184608]

๋ฐœํ–‰: (2026๋…„ 1์›” 1์ผ ์˜ค์ „ 03:46 GMT+9)
12 min read
์›๋ฌธ: Dev.to

It looks like the text youโ€™d like translated is missing. Could you please provide the content you want translated (excluding the source line you already included)? Once I have the full text, Iโ€™ll translate it into Korean while keeping the source line and all formatting exactly as you requested.

๐Ÿ“ˆ ์‹ค์ œ ์šด์˜ ํ™˜๊ฒฝ์—์„œ์˜ ๋„์ „ ๊ณผ์ œ

์šฐ๋ฆฌ์˜ ์ „์ž์ƒ๊ฑฐ๋ž˜ ํ”Œ๋žซํผ ํ”„๋กœ์ ํŠธ์—์„œ ์šฐ๋ฆฌ๋Š” ๋ช‡ ๊ฐ€์ง€ ์ „ํ˜•์ ์ธ ์„ฑ๋Šฅ ๊ณผ์ œ์— ์ง๋ฉดํ–ˆ์Šต๋‹ˆ๋‹ค:

๐Ÿ›’ ํ”Œ๋ž˜์‹œ ์„ธ์ผ ์‹œ๋‚˜๋ฆฌ์˜ค

๋Œ€๊ทœ๋ชจ ํ”„๋กœ๋ชจ์…˜(์˜ˆ: ๋“€์–ผโ€ฏ11) ๊ธฐ๊ฐ„ ๋™์•ˆ ์ œํ’ˆ ์ƒ์„ธ ํŽ˜์ด์ง€๋Š” ์ดˆ๋‹น ์ˆ˜์‹ญ๋งŒ ๊ฑด์˜ ์š”์ฒญ์„ ์ฒ˜๋ฆฌํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค. ์ด๋Š” ํ”„๋ ˆ์ž„์›Œํฌ์˜ ๋™์‹œ ์ฒ˜๋ฆฌ ๋Šฅ๋ ฅ๊ณผ ๋ฉ”๋ชจ๋ฆฌ ๊ด€๋ฆฌ์— ๊ทน์‹ฌํ•œ ์••๋ฐ•์„ ๊ฐ€ํ•ฉ๋‹ˆ๋‹ค.

๐Ÿ’ณ ๊ฒฐ์ œ ์‹œ์Šคํ…œ ์‹œ๋‚˜๋ฆฌ์˜ค

๊ฒฐ์ œ ์‹œ์Šคํ…œ์€ ๋งŽ์€ ์ˆ˜์˜ ๋‹จ์‹œ๊ฐ„ ์—ฐ๊ฒฐ์„ ๋ฐ›์œผ๋ฉฐ, ๊ฐ๊ฐ ๋น ๋ฅธ ์‘๋‹ต์ด ํ•„์š”ํ•ฉ๋‹ˆ๋‹ค. ์ด๋Š” ์—ฐ๊ฒฐ ๊ด€๋ฆฌ ํšจ์œจ์„ฑ๊ณผ ๋น„๋™๊ธฐ ์ฒ˜๋ฆฌ์— ๋ถ€๋‹ด์„ ์ค๋‹ˆ๋‹ค.

๐Ÿ“Š ์‹ค์‹œ๊ฐ„ ํ†ต๊ณ„ ์‹œ๋‚˜๋ฆฌ์˜ค

์šฐ๋ฆฌ๋Š” ์‹ค์‹œ๊ฐ„์œผ๋กœ ์‚ฌ์šฉ์ž ํ–‰๋™ ๋ฐ์ดํ„ฐ๋ฅผ ์ง‘๊ณ„ํ•ด์•ผ ํ•˜๋ฉฐ, ์ด๋Š” ํšจ์œจ์ ์ธ ๋ฐ์ดํ„ฐ ์ฒ˜๋ฆฌ์™€ ๋‚ฎ์€ ๋ฉ”๋ชจ๋ฆฌ ์˜ค๋ฒ„ํ—ค๋“œ๋ฅผ ์š”๊ตฌํ•ฉ๋‹ˆ๋‹ค.

Source: https://example.com/performance-data

๐Ÿ“Š ํ”„๋กœ๋•์…˜ ํ™˜๊ฒฝ ์„ฑ๋Šฅ ๋ฐ์ดํ„ฐ ๋น„๊ต

๐Ÿ”“ Keepโ€‘Alive ํ™œ์„ฑํ™” (์žฅ๊ธฐ ์—ฐ๊ฒฐ ์‹œ๋‚˜๋ฆฌ์˜ค)

์žฅ๊ธฐ ์—ฐ๊ฒฐ ํŠธ๋ž˜ํ”ฝ์€ ์ „์ฒด ๋ถ€ํ•˜์˜ **>โ€ฏ70โ€ฏ%**๋ฅผ ์ฐจ์ง€ํ•ฉ๋‹ˆ๋‹ค. ์•„๋ž˜๋Š” ์‹ค์ œ ๋น„์ฆˆ๋‹ˆ์Šค ์ŠคํŠธ๋ ˆ์Šค ํ…Œ์ŠคํŠธ ๊ฒฐ๊ณผ์ž…๋‹ˆ๋‹ค.

wrk โ€“ ์ œํ’ˆ ์ƒ์„ธ ํŽ˜์ด์ง€ ์ ‘๊ทผ

FrameworkQPSAvgโ€ฏLatencyP99โ€ฏLatencyMemory UsageCPU Usage
Tokio340,130.921.22โ€ฏms5.96โ€ฏms128โ€ฏMB45โ€ฏ%
Hyperlane Framework334,888.273.10โ€ฏms13.94โ€ฏms96โ€ฏMB42โ€ฏ%
Rocket Framework298,945.311.42โ€ฏms6.67โ€ฏms156โ€ฏMB48โ€ฏ%
Rust Standard Library291,218.961.64โ€ฏms8.62โ€ฏms84โ€ฏMB44โ€ฏ%
Gin Framework242,570.161.67โ€ฏms4.67โ€ฏms112โ€ฏMB52โ€ฏ%
Go Standard Library234,178.931.58โ€ฏms1.15โ€ฏms98โ€ฏMB49โ€ฏ%
Node Standard Library139,412.132.58โ€ฏms837.62โ€ฏยตs186โ€ฏMB65โ€ฏ%

ab โ€“ ๊ฒฐ์ œ ์š”์ฒญ

FrameworkQPSAvgโ€ฏLatencyErrorโ€ฏRateThroughput (KB/s)Connโ€ฏSetupโ€ฏTime
Hyperlane Framework316,211.633.162โ€ฏms0โ€ฏ%32,115.240.3โ€ฏms
Tokio308,596.263.240โ€ฏms0โ€ฏ%28,026.810.3โ€ฏms
Rocket Framework267,931.523.732โ€ฏms0โ€ฏ%70,907.660.2โ€ฏms
Rust Standard Library260,514.563.839โ€ฏms0โ€ฏ%23,660.0121.2โ€ฏms
Go Standard Library226,550.344.414โ€ฏms0โ€ฏ%34,071.050.2โ€ฏms
Gin Framework224,296.164.458โ€ฏms0โ€ฏ%31,760.690.2โ€ฏms
Node Standard Library85,357.1811.715โ€ฏms81.2โ€ฏ%4,961.7033.5โ€ฏms

๐Ÿ”’ Keepโ€‘Alive ๋น„ํ™œ์„ฑํ™” (๋‹จ๊ธฐ ์—ฐ๊ฒฐ ์‹œ๋‚˜๋ฆฌ์˜ค)

๋‹จ๊ธฐ ์—ฐ๊ฒฐ ํŠธ๋ž˜ํ”ฝ์€ ์ „์ฒด ๋ถ€ํ•˜์˜ **โ‰ˆโ€ฏ30โ€ฏ%**๋ฅผ ์ฐจ์ง€ํ•˜์ง€๋งŒ ๊ฒฐ์ œ, ๋กœ๊ทธ์ธ ๋“ฑ์— ๋งค์šฐ ์ค‘์š”ํ•ฉ๋‹ˆ๋‹ค.

wrk โ€“ ๋กœ๊ทธ์ธ ์š”์ฒญ

FrameworkQPSAvgโ€ฏLatencyConnโ€ฏSetupโ€ฏTimeMemory UsageErrorโ€ฏRate
Hyperlane Framework51,031.273.51โ€ฏms0.8โ€ฏms64โ€ฏMB0โ€ฏ%
Tokio49,555.873.64โ€ฏms0.9โ€ฏms72โ€ฏMB0โ€ฏ%
Rocket Framework49,345.763.70โ€ฏms1.1โ€ฏms88โ€ฏMB0โ€ฏ%
Gin Framework40,149.754.69โ€ฏms1.3โ€ฏms76โ€ฏMB0โ€ฏ%
Go Standard Library38,364.064.96โ€ฏms1.5โ€ฏms68โ€ฏMB0โ€ฏ%
Rust Standard Library30,142.5513.39โ€ฏms39.09โ€ฏms56โ€ฏMB0โ€ฏ%
Node Standard Library28,286.964.76โ€ฏms3.48โ€ฏms92โ€ฏMB0.1โ€ฏ%

ab โ€“ ๊ฒฐ์ œ ์ฝœ๋ฐฑ

FrameworkQPSAvgโ€ฏLatencyErrorโ€ฏRateThroughput (KB/s)Connโ€ฏReuseโ€ฏRate
Tokio51,825.1319.296โ€ฏms0โ€ฏ%4,453.720โ€ฏ%
Hyperlane Framework51,554.4719.397โ€ฏms0โ€ฏ%5,387.040โ€ฏ%
Rocket Framework49,621.0220.153โ€ฏms0โ€ฏ%11,969.130โ€ฏ%
Go Standard Library47,915.2020.870โ€ฏms0โ€ฏ%6,972.040โ€ฏ%
Gin Framework47,081.0521.240โ€ฏms0โ€ฏ%โ€”โ€”

| 0โ€ฏ% | 6,436.86 | 0โ€ฏ% | | Node ํ‘œ์ค€ ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ | 44,763.11 | 22.340โ€ฏms | 0โ€ฏ% | 4,983.39 | 0โ€ฏ% | | Rust ํ‘œ์ค€ ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ | 31,511.00 | 31.735โ€ฏms | 0โ€ฏ% | 2,707.98 | 0โ€ฏ% |

๐ŸŽฏ Deep Technical Analysis

๐Ÿš€ Memoryโ€‘Management Comparison

Memory usage is a decisive factor for framework stability under load.

  • Hyperlane Framework โ€“ Utilizes an objectโ€‘pool + zeroโ€‘copy design. In tests with 1โ€ฏM concurrent connections it consumed only 96โ€ฏMB, far lower than any competitor.
  • Node.js โ€“ The V8 garbage collector introduces noticeable pauses. When memory reaches โ‰ˆโ€ฏ1โ€ฏGB, GC pause times can exceed 200โ€ฏms, causing severe latency spikes.

โšก Connectionโ€‘Management Efficiency

ScenarioObservation
Shortโ€‘Connection โ€“ HyperlaneConnectionโ€‘setup time 0.8โ€ฏms, dramatically better than Rustโ€™s 39โ€ฏms.
Longโ€‘Connection โ€“ TokioLowest P99 latency (5.96โ€ฏms) thanks to excellent connection reuse, though memory usage is higher.

๐Ÿ”ง CPUโ€‘Usage Efficiency

  • Hyperlane Framework shows the lowest CPU utilization (โ‰ˆโ€ฏ42โ€ฏ%) while delivering topโ€‘tier throughput, indicating efficient use of compute resources.

All numbers are derived from six months of productionโ€‘grade stress testing and continuous monitoring.

Node.js CPU Issues

Node.js ํ‘œ์ค€ ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ๋Š” 65โ€ฏ% CPU๊นŒ์ง€ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ์ด๋Š” ์ฃผ๋กœ V8 ์—”์ง„์˜ ํ•ด์„, ์‹คํ–‰ ๋ฐ ๊ฐ€๋น„์ง€ ์ปฌ๋ ‰์…˜ ์˜ค๋ฒ„ํ—ค๋“œ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค. ๊ณ ๋™์‹œ์„ฑ ์‹œ๋‚˜๋ฆฌ์˜ค์—์„œ๋Š” ์ด๋กœ ์ธํ•ด ์„œ๋ฒ„ ๋ถ€ํ•˜๊ฐ€ ๊ณผ๋„ํ•˜๊ฒŒ ์ฆ๊ฐ€ํ•ฉ๋‹ˆ๋‹ค.

Source: โ€ฆ

๐Ÿ’ป ์ฝ”๋“œ ๊ตฌํ˜„ ์„ธ๋ถ€ ์‚ฌํ•ญ ๋ถ„์„

๐Ÿข Node.js ๊ตฌํ˜„์—์„œ์˜ ์„ฑ๋Šฅ ๋ณ‘๋ชฉ ํ˜„์ƒ

const http = require('http');

const server = http.createServer((req, res) => {
  // This simple handler function actually has multiple performance issues
  res.writeHead(200, { 'Content-Type': 'text/plain' });
  res.end('Hello');
});

server.listen(60000, '127.0.0.1');

๋ฌธ์ œ ๋ถ„์„

๋ฌธ์ œ์„ค๋ช…
๋นˆ๋ฒˆํ•œ ๋ฉ”๋ชจ๋ฆฌ ํ• ๋‹น๊ฐ ์š”์ฒญ๋งˆ๋‹ค ์ƒˆ๋กœ์šด ์‘๋‹ต ๊ฐ์ฒด๊ฐ€ ์ƒ์„ฑ๋ฉ๋‹ˆ๋‹ค
๋ฌธ์ž์—ด ์—ฐ๊ฒฐ ์˜ค๋ฒ„ํ—ค๋“œres.end() ๊ฐ€ ๋‚ด๋ถ€์ ์œผ๋กœ ๋ฌธ์ž์—ด ์—ฐ์‚ฐ์„ ์ˆ˜ํ–‰ํ•ฉ๋‹ˆ๋‹ค
์ด๋ฒคํŠธ ๋ฃจํ”„ ์ฐจ๋‹จ๋™๊ธฐ์‹ ์ž‘์—…์ด ์ด๋ฒคํŠธ ๋ฃจํ”„๋ฅผ ์ฐจ๋‹จํ•ฉ๋‹ˆ๋‹ค
์—ฐ๊ฒฐ ํ’€ ๋ถ€์žฌ๊ฐ ์—ฐ๊ฒฐ์ด ๋…๋ฆฝ์ ์œผ๋กœ ์ฒ˜๋ฆฌ๋ฉ๋‹ˆ๋‹ค

๐Ÿน Go ๊ตฌํ˜„์˜ ๋™์‹œ์„ฑ ์žฅ์ 

package main

import (
    "fmt"
    "net/http"
)

func handler(w http.ResponseWriter, r *http.Request) {
    fmt.Fprintf(w, "Hello")
}

func main() {
    http.HandleFunc("/", handler)
    http.ListenAndServe(":60000", nil)
}

์žฅ์  ๋ถ„์„

  • ๊ฒฝ๋Ÿ‰ Goroutine โ€“ ์ˆ˜์ฒœ ๊ฐœ์˜ goroutine์„ ์†์‰ฝ๊ฒŒ ์ƒ์„ฑํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค
  • ๋‚ด์žฅ ๋™์‹œ์„ฑ ์•ˆ์ „์„ฑ โ€“ ์ฑ„๋„ ๋ฉ”์ปค๋‹ˆ์ฆ˜์œผ๋กœ ๋ ˆ์ด์Šค ์ปจ๋””์…˜์„ ๋ฐฉ์ง€ํ•ฉ๋‹ˆ๋‹ค
  • ์ตœ์ ํ™”๋œ ํ‘œ์ค€ ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ โ€“ net/http ํŒจํ‚ค์ง€๋Š” ๋งค์šฐ ์ตœ์ ํ™”๋˜์–ด ์žˆ์Šต๋‹ˆ๋‹ค

๋‹จ์  ๋ถ„์„

  • GC ์••๋ ฅ โ€“ ์งง์€ ์ˆ˜๋ช…์˜ ๊ฐ์ฒด๊ฐ€ ๋งŽ์•„ GC ๋ถ€ํ•˜๊ฐ€ ์ฆ๊ฐ€ํ•ฉ๋‹ˆ๋‹ค
  • ๋ฉ”๋ชจ๋ฆฌ ์‚ฌ์šฉ๋Ÿ‰ โ€“ Goroutine ์Šคํƒ์ด ์ƒ๋Œ€์ ์œผ๋กœ ํฐ ์ดˆ๊ธฐ ํฌ๊ธฐ๋ฅผ ๊ฐ€์ง‘๋‹ˆ๋‹ค
  • ์—ฐ๊ฒฐ ๊ด€๋ฆฌ โ€“ ํ‘œ์ค€ ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ์˜ ์—ฐ๊ฒฐ ํ’€ ๊ตฌํ˜„์ด ์ถฉ๋ถ„ํžˆ ์œ ์—ฐํ•˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค

๐Ÿš€ Rust ๊ตฌํ˜„์˜ ์‹œ์Šคํ…œโ€‘๋ ˆ๋ฒจ ์ตœ์ ํ™”

use std::io::prelude::*;
use std::net::{TcpListener, TcpStream};

fn handle_client(mut stream: TcpStream) {
    let response = "HTTP/1.1 200 OK\r\n\r\nHello";
    stream.write_all(response.as_bytes()).unwrap();
    stream.flush().unwrap();
}

fn main() {
    let listener = TcpListener::bind("127.0.0.1:60000").unwrap();

    for stream in listener.incoming() {
        let stream = stream.unwrap();
        handle_client(stream);
    }
}

์žฅ์  ๋ถ„์„

  • ์ œ๋กœโ€‘์ฝ”์ŠคํŠธ ์ถ”์ƒํ™” โ€“ ์ปดํŒŒ์ผ ํƒ€์ž„ ์ตœ์ ํ™”๋กœ ๋Ÿฐํƒ€์ž„ ์˜ค๋ฒ„ํ—ค๋“œ๊ฐ€ ์—†์Šต๋‹ˆ๋‹ค
  • ๋ฉ”๋ชจ๋ฆฌ ์•ˆ์ „์„ฑ โ€“ ์†Œ์œ ๊ถŒ ์‹œ์Šคํ…œ์ด ๋ฉ”๋ชจ๋ฆฌ ๋ˆ„์ˆ˜๋ฅผ ๋ฐฉ์ง€ํ•ฉ๋‹ˆ๋‹ค
  • GC ์ค‘๋‹จ ์—†์Œ โ€“ ๊ฐ€๋น„์ง€ ์ปฌ๋ ‰์…˜์— ์˜ํ•œ ์„ฑ๋Šฅ ๋ณ€๋™์ด ์—†์Šต๋‹ˆ๋‹ค

๋‹จ์  ๋ถ„์„

  • ๊ฐœ๋ฐœ ๋ณต์žก๋„ โ€“ ๋ผ์ดํ”„ํƒ€์ž„ ๊ด€๋ฆฌ๊ฐ€ ๊ฐœ๋ฐœ ๋‚œ์ด๋„๋ฅผ ๋†’์ž…๋‹ˆ๋‹ค
  • ์ปดํŒŒ์ผ ์‹œ๊ฐ„ โ€“ ๋ณต์žกํ•œ ์ œ๋„ค๋ฆญ์œผ๋กœ ์ธํ•ด ์ปดํŒŒ์ผ ์‹œ๊ฐ„์ด ๊ธธ์–ด์ง‘๋‹ˆ๋‹ค
  • ์ƒํƒœ๊ณ„ โ€“ Go์™€ Node.js์— ๋น„ํ•ด ์ƒํƒœ๊ณ„๊ฐ€ ๋œ ์„ฑ์ˆ™ํ•ฉ๋‹ˆ๋‹ค

๐ŸŽฏ ํ”„๋กœ๋•์…˜ ํ™˜๊ฒฝ ๋ฐฐํฌ ๊ถŒ์žฅ ์‚ฌํ•ญ

๐Ÿช ์ „์ž์ƒ๊ฑฐ๋ž˜ ์‹œ์Šคํ…œ ์•„ํ‚คํ…์ฒ˜ ๊ถŒ์žฅ ์‚ฌํ•ญ

์•ก์„ธ์Šค ๋ ˆ์ด์–ด

  • Hyperlane ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์‚ฌ์šฉ์ž ์š”์ฒญ์„ ์ฒ˜๋ฆฌํ•ฉ๋‹ˆ๋‹ค
  • ์—ฐ๊ฒฐ ํ’€ ํฌ๊ธฐ๋ฅผ CPU ์ฝ”์–ด ์ˆ˜์˜ 2โ€“4๋ฐฐ๋กœ ์„ค์ •ํ•ฉ๋‹ˆ๋‹ค
  • ์—ฐ๊ฒฐ ์„ค์ • ์˜ค๋ฒ„ํ—ค๋“œ๋ฅผ ์ค„์ด๊ธฐ ์œ„ํ•ด Keepโ€‘Alive๋ฅผ ํ™œ์„ฑํ™”ํ•ฉ๋‹ˆ๋‹ค

๋น„์ฆˆ๋‹ˆ์Šค ๋ ˆ์ด์–ด

  • ๋น„๋™๊ธฐ ์ž‘์—…์„ ์œ„ํ•ด Tokio ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค
  • ํ•ฉ๋ฆฌ์ ์ธ ํƒ€์ž„์•„์›ƒ ๊ฐ’์„ ์„ค์ •ํ•ฉ๋‹ˆ๋‹ค
  • ํšŒ๋กœ ์ฐจ๋‹จ๊ธฐ ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ๊ตฌํ˜„ํ•ฉ๋‹ˆ๋‹ค

๋ฐ์ดํ„ฐ ๋ ˆ์ด์–ด

  • ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค ์—ฐ๊ฒฐ์„ ๊ด€๋ฆฌํ•˜๊ธฐ ์œ„ํ•ด ์—ฐ๊ฒฐ ํ’€์„ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค
  • ์ฝ๊ธฐโ€‘์“ฐ๊ธฐ ๋ถ„๋ฆฌ๋ฅผ ๊ตฌํ˜„ํ•ฉ๋‹ˆ๋‹ค
  • ์ ์ ˆํ•œ ์บ์‹ฑ ์ „๋žต์„ ์„ค์ •ํ•ฉ๋‹ˆ๋‹ค

๐Ÿ’ณ ๊ฒฐ์ œ ์‹œ์Šคํ…œ ์ตœ์ ํ™” ๊ถŒ์žฅ ์‚ฌํ•ญ

์—ฐ๊ฒฐ ๊ด€๋ฆฌ

  • Hyperlane์˜ ๋‹จ๊ธฐ ์—ฐ๊ฒฐ ์ตœ์ ํ™”๋ฅผ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค
  • TCP Fast Open์„ ํ™œ์„ฑํ™”ํ•ฉ๋‹ˆ๋‹ค
  • ์—ฐ๊ฒฐ ์žฌ์‚ฌ์šฉ์„ ๊ตฌํ˜„ํ•ฉ๋‹ˆ๋‹ค

์˜ค๋ฅ˜ ์ฒ˜๋ฆฌ

  • ์žฌ์‹œ๋„ ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ๊ตฌํ˜„ํ•ฉ๋‹ˆ๋‹ค
  • ํ•ฉ๋ฆฌ์ ์ธ ํƒ€์ž„์•„์›ƒ ๊ฐ’์„ ์„ค์ •ํ•ฉ๋‹ˆ๋‹ค
  • ์ƒ์„ธ ์˜ค๋ฅ˜ ๋กœ๊ทธ๋ฅผ ๊ธฐ๋กํ•ฉ๋‹ˆ๋‹ค

๋ชจ๋‹ˆํ„ฐ๋ง ๋ฐ ์•Œ๋ฆผ

  • QPS์™€ ์ง€์—ฐ ์‹œ๊ฐ„์„ ์‹ค์‹œ๊ฐ„์œผ๋กœ ๋ชจ๋‹ˆํ„ฐ๋งํ•ฉ๋‹ˆ๋‹ค
  • ํ•ฉ๋ฆฌ์ ์ธ ์•Œ๋ฆผ ์ž„๊ณ„๊ฐ’์„ ์„ค์ •ํ•ฉ๋‹ˆ๋‹ค
  • ์ž๋™ ์Šค์ผ€์ผ๋ง์„ ๊ตฌํ˜„ํ•ฉ๋‹ˆ๋‹ค

๐Ÿ“Š ์‹ค์‹œ๊ฐ„ ํ†ต๊ณ„ ์‹œ์Šคํ…œ ๊ถŒ์žฅ ์‚ฌํ•ญ

๋ฐ์ดํ„ฐ ์ฒ˜๋ฆฌ

  • Tokio์˜ ๋น„๋™๊ธฐ ์ฒ˜๋ฆฌ ๊ธฐ๋Šฅ์„ ํ™œ์šฉํ•ฉ๋‹ˆ๋‹ค
  • ๋ฐฐ์น˜ ์ฒ˜๋ฆฌ๋ฅผ ๊ตฌํ˜„ํ•ฉ๋‹ˆ๋‹ค
  • ์ ์ ˆํ•œ ๋ฒ„ํผ ํฌ๊ธฐ๋ฅผ ์„ค์ •ํ•ฉ๋‹ˆ๋‹ค

๋ฉ”๋ชจ๋ฆฌ ๊ด€๋ฆฌ

  • ํ• ๋‹น์„ ์ค„์ด๊ธฐ ์œ„ํ•ด ๊ฐ์ฒด ํ’€์„ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค
  • ๋ฐ์ดํ„ฐ ์ƒค๋”ฉ์„ ๊ตฌํ˜„ํ•ฉ๋‹ˆ๋‹ค
  • ์ ํ•ฉํ•œ GC ์ „๋žต์„ ์„ค์ •ํ•ฉ๋‹ˆ๋‹ค

์„ฑ๋Šฅ ๋ชจ๋‹ˆํ„ฐ๋ง

  • ๋ฉ”๋ชจ๋ฆฌ ์‚ฌ์šฉ๋Ÿ‰์„ ์‹ค์‹œ๊ฐ„์œผ๋กœ ๋ชจ๋‹ˆํ„ฐ๋งํ•ฉ๋‹ˆ๋‹ค
  • GC ๋กœ๊ทธ๋ฅผ ๋ถ„์„ํ•ฉ๋‹ˆ๋‹ค
  • ํ•ซ ์ฝ”๋“œ ๊ฒฝ๋กœ๋ฅผ ์ตœ์ ํ™”ํ•ฉ๋‹ˆ๋‹ค

๐Ÿ”ฎ ๋ฏธ๋ž˜ ๊ธฐ์ˆ  ํŠธ๋ Œ๋“œ

๐Ÿš€ ์„ฑ๋Šฅ ์ตœ์ ํ™” ๋ฐฉํ–ฅ

  • Hardware Acceleration โ€“ ๋ฐ์ดํ„ฐ ์ฒ˜๋ฆฌ์— GPU ํ™œ์šฉ, ๋„คํŠธ์›Œํฌ ์„ฑ๋Šฅ ํ–ฅ์ƒ์„ ์œ„ํ•ด DPDK ์‚ฌ์šฉ, ์ œ๋กœโ€‘์นดํ”ผ ๋ฐ์ดํ„ฐ ์ „์†ก ๊ตฌํ˜„.
  • Algorithm Optimization โ€“ ์ž‘์—… ์Šค์ผ€์ค„๋ง ์•Œ๊ณ ๋ฆฌ์ฆ˜ ์ •๊ตํ™”, ๋ฉ”๋ชจ๋ฆฌ ํ• ๋‹น ์ „๋žต ์ตœ์ ํ™”, ์ง€๋Šฅํ˜• ์—ฐ๊ฒฐ ๊ด€๋ฆฌ ๊ตฌํ˜„.
  • Architecture Evolution โ€“ ๋งˆ์ดํฌ๋กœ์„œ๋น„์Šค ์•„ํ‚คํ…์ฒ˜๋กœ ์ „ํ™˜, ์„œ๋น„์Šค ๋ฉ”์‹œ ๋„์ž…, ์—ฃ์ง€ ์ปดํ“จํŒ… ์ˆ˜์šฉ.

๐Ÿ”ง ๊ฐœ๋ฐœ ๊ฒฝํ—˜ ๊ฐœ์„ 

  • Toolchain Improvement โ€“ ๋” ๋‚˜์€ ๋””๋ฒ„๊น… ๋„๊ตฌ ์ œ๊ณต, ํ•ซโ€‘๋ฆฌ๋กœ๋”ฉ ๊ตฌํ˜„, ์ปดํŒŒ์ผ ์†๋„ ๊ฐ€์†.
  • Framework Simplification โ€“ ๋ณด์ผ๋Ÿฌํ”Œ๋ ˆ์ดํŠธ ์ฝ”๋“œ ๊ฐ์†Œ, ํ•ฉ๋ฆฌ์ ์ธ ๊ธฐ๋ณธ ์„ค์ • ์ œ๊ณต, โ€œ์ปจ๋ฒค์…˜๋ณด๋‹ค ์„ค์ •โ€ ์›์น™ ๋”ฐ๋ฆ„.
  • Documentation โ€“ ๋ฌธ์„œ๋ฅผ ์ตœ์‹  ์ƒํƒœ๋กœ ์œ ์ง€ํ•˜๊ณ  ํฌ๊ด„์ ์œผ๋กœ ๊ด€๋ฆฌ, ๋ฒ„์ „ ๊ฐ„ ๋ช…ํ™•ํ•œ ๋งˆ์ด๊ทธ๋ ˆ์ด์…˜ ๊ฐ€์ด๋“œ ์ œ๊ณต, ์‹ค์šฉ์ ์ธ ์˜ˆ์ œ์™€ ๋ฒ ์ŠคํŠธ ํ”„๋ž™ํ‹ฐ์Šค ํŒจํ„ด ํฌํ•จ.

๊ฐœ์„ ์ 

  • ์ƒ์„ธํ•œ ์„ฑ๋Šฅ ํŠœ๋‹ ๊ฐ€์ด๋“œ ์ œ๊ณต
  • ๋ฒ ์ŠคํŠธ ํ”„๋ž™ํ‹ฐ์Šค ์˜ˆ์ œ ๊ตฌํ˜„
  • ํ™œ๋ฐœํ•œ ์ปค๋ฎค๋‹ˆํ‹ฐ ๊ตฌ์ถ•

๐ŸŽฏ Summary

์ƒ์‚ฐ ํ™˜๊ฒฝ์— ๋Œ€ํ•œ ์‹ฌ์ธต ํ…Œ์ŠคํŠธ๋ฅผ ํ†ตํ•ด ๊ณ ๋™์‹œ์„ฑ ์‹œ๋‚˜๋ฆฌ์˜ค์—์„œ ์›น ํ”„๋ ˆ์ž„์›Œํฌ์˜ ์„ฑ๋Šฅ์„ ๋‹ค์‹œ ํ™•์ธํ–ˆ์Šต๋‹ˆ๋‹ค.

  • Hyperlaneโ€ฏโ€”โ€ฏ๋ฉ”๋ชจ๋ฆฌ ๊ด€๋ฆฌ์™€ CPU ์‚ฌ์šฉ ํšจ์œจ์„ฑ์—์„œ ๋…ํŠนํ•œ ์žฅ์ ์„ ์ œ๊ณตํ•˜์—ฌ ์ž์›์— ๋ฏผ๊ฐํ•œ ์ƒํ™ฉ์— ํŠนํžˆ ์ ํ•ฉํ•ฉ๋‹ˆ๋‹ค.
  • Tokioโ€ฏโ€”โ€ฏ์—ฐ๊ฒฐ ๊ด€๋ฆฌ์™€ ์ง€์—ฐ ์‹œ๊ฐ„ ์ œ์–ด์— ๋›ฐ์–ด๋‚˜๋ฉฐ, ์—„๊ฒฉํ•œ ์ง€์—ฐ ์‹œ๊ฐ„ ์š”๊ตฌ ์‚ฌํ•ญ์ด ์žˆ๋Š” ์‚ฌ์šฉ ์‚ฌ๋ก€์— ์ด์ƒ์ ์ž…๋‹ˆ๋‹ค.

ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์„ ํƒํ•  ๋•Œ๋Š” ์„ฑ๋Šฅ, ๊ฐœ๋ฐœ ํšจ์œจ์„ฑ, ํŒ€ ์—ญ๋Ÿ‰ ๋“ฑ ์—ฌ๋Ÿฌ ์š”์†Œ๋ฅผ ๊ณ ๋ คํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค. โ€œ์ตœ๊ณ โ€์˜ ํ”„๋ ˆ์ž„์›Œํฌ๋Š” ์—†์œผ๋ฉฐ, ์ฃผ์–ด์ง„ ์ƒํ™ฉ์— ๊ฐ€์žฅ ์ ํ•ฉํ•œ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์„ ํƒํ•˜๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•ฉ๋‹ˆ๋‹ค. ์ œ ๊ฒฝํ—˜์ด ๊ธฐ์ˆ  ์„ ํƒ์— ์žˆ์–ด ๋ณด๋‹ค ํ˜„๋ช…ํ•œ ๊ฒฐ์ •์„ ๋‚ด๋ฆฌ๋Š” ๋ฐ ๋„์›€์ด ๋˜๊ธธ ๋ฐ”๋ž๋‹ˆ๋‹ค.

GitHub Homepage: hyperlane-dev/hyperlane

Back to Blog

๊ด€๋ จ ๊ธ€

๋” ๋ณด๊ธฐ ยป

๐Ÿ”ฅ_๊ณ ๋™์‹œ์„ฑ_ํ”„๋ ˆ์ž„์›Œํฌ_์„ ํƒ_๊ธฐ์ˆ _๊ฒฐ์ •[20260102134534]

๐Ÿ“ˆ ์‹ค์ œ ์šด์˜ ํ™˜๊ฒฝ ๊ณผ์ œ ์šฐ๋ฆฌ eโ€‘commerce ํ”Œ๋žซํผ ํ”„๋กœ์ ํŠธ์—์„œ ์šฐ๋ฆฌ๋Š” ์—ฌ๋Ÿฌ ์ „ํ˜•์ ์ธ ์„ฑ๋Šฅ ๊ณผ์ œ์— ์ง๋ฉดํ–ˆ์Šต๋‹ˆ๋‹ค: | Scenario | Description | |

๐Ÿ”ฅ_๊ณ ์„ฑ๋Šฅ_๋™์‹œ์„ฑ_ํ”„๋ ˆ์ž„์›Œํฌ_์„ ํƒ_๊ธฐ์ˆ _๊ฒฐ์ •[20260102150917]

ํ”„๋ ˆ์ž„์›Œํฌ ์„ฑ๋Šฅ ๋ถ„์„ โ€“ 10 Mโ€‘DAU ์ „์ž์ƒ๊ฑฐ๋ž˜ ํ”Œ๋žซํผ์—์„œ 6๊ฐœ์›”๊ฐ„์˜ ์ŠคํŠธ๋ ˆ์Šคโ€‘ํ…Œ์ŠคํŠธ ๋ฐ ๋ชจ๋‹ˆํ„ฐ๋ง์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ์‹ค์ œ ํ”„๋กœ๋•์…˜ ๋ฐ์ดํ„ฐ.

๐Ÿ”ฅ_๊ณ ๋™์‹œ์„ฑ_ํ”„๋ ˆ์ž„์›Œํฌ_์„ ํƒ_๊ธฐ์ˆ _๊ฒฐ์ •[20260101032811]

๐Ÿ“Š Productionโ€‘Environment Performance Analysis ์„ ์ž„ ์—”์ง€๋‹ˆ์–ด๋กœ์„œ ์ˆ˜๋งŽ์€ ํ”„๋กœ๋•์…˜ ๊ณผ์ œ์— ์ง๋ฉดํ•ด ๋ณธ ๋‚˜๋Š” ์˜ฌ๋ฐ”๋ฅธ โ€ฆ ์„ ํƒ์ด ์–ผ๋งˆ๋‚˜ ์ค‘์š”ํ•œ์ง€ ์•Œ๊ณ  ์žˆ๋‹ค.