๐Ÿ”ฅ_๊ณ ์„ฑ๋Šฅ_๋™์‹œ์„ฑ_ํ”„๋ ˆ์ž„์›Œํฌ_์„ ํƒ_๊ธฐ์ˆ _๊ฒฐ์ •[20260102150917]

๋ฐœํ–‰: (2026๋…„ 1์›” 3์ผ ์˜ค์ „ 12:09 GMT+9)
13 min read
์›๋ฌธ: Dev.to

Source: Dev.to

๋ฒˆ์—ญํ•  ํ…์ŠคํŠธ๋ฅผ ์ œ๊ณตํ•ด ์ฃผ์‹œ๋ฉด, ํ•ด๋‹น ๋‚ด์šฉ์„ ํ•œ๊ตญ์–ด๋กœ ๋ฒˆ์—ญํ•ด ๋“œ๋ฆฌ๊ฒ ์Šต๋‹ˆ๋‹ค. (์ฝ”๋“œ ๋ธ”๋ก, URL ๋ฐ ๋งˆํฌ๋‹ค์šด ํ˜•์‹์€ ๊ทธ๋Œ€๋กœ ์œ ์ง€๋ฉ๋‹ˆ๋‹ค.)

๐Ÿ’ก ์‹ค์ œ ์šด์˜ ํ™˜๊ฒฝ ๊ณผ์ œ

In our eโ€‘commerce platform we repeatedly faced three typical highโ€‘concurrency scenarios:

ScenarioDescription
๐Ÿ›’ Flashโ€‘SaleDoubleโ€ฏ11๊ณผ ๊ฐ™์€ ์ด๋ฒคํŠธ ์‹œ ์ดˆ๋‹น ์ˆ˜์‹ญ๋งŒ ๊ฑด์˜ ์š”์ฒญ์ด ์ œํ’ˆ ์ƒ์„ธ ํŽ˜์ด์ง€์— ๋ชฐ๋ฆฝ๋‹ˆ๋‹ค.
๐Ÿ’ณ Payment์ฆ‰์‹œ ์‘๋‹ตํ•ด์•ผ ํ•˜๋Š” ์งง์€ ์ˆ˜๋ช…์˜ ์—ฐ๊ฒฐ์ด ๋Œ€๋Ÿ‰์œผ๋กœ ๋ฐœ์ƒํ•ฉ๋‹ˆ๋‹ค.
๐Ÿ“Š Realโ€‘time Statistics์‚ฌ์šฉ์ž ํ–‰๋™ ๋ฐ์ดํ„ฐ๋ฅผ ์ง€์†์ ์œผ๋กœ ์ง‘๊ณ„ํ•˜๋ฉฐ, ํšจ์œจ์ ์ธ ๋ฉ”๋ชจ๋ฆฌ ์‚ฌ์šฉ๊ณผ ๋ฐ์ดํ„ฐ ์ฒ˜๋ฆฌ ์ฒ˜๋ฆฌ๋Ÿ‰์„ ์š”๊ตฌํ•ฉ๋‹ˆ๋‹ค.

Source: โ€ฆ

๐Ÿ“Š ํ”„๋กœ๋•์…˜ ํ™˜๊ฒฝ ์„ฑ๋Šฅ ๋ฐ์ดํ„ฐ ๋น„๊ต

๐Ÿ”“ Keepโ€‘Alive ํ™œ์„ฑํ™” (Longโ€‘Connection ์‹œ๋‚˜๋ฆฌ์˜ค)

Longโ€‘connection ํŠธ๋ž˜ํ”ฝ์ด ์ „์ฒด ๋ถ€ํ•˜์˜ **>โ€ฏ70โ€ฏ%**๋ฅผ ์ฐจ์ง€ํ•ฉ๋‹ˆ๋‹ค.

wrk โ€“ Productโ€‘Detail ํŽ˜์ด์ง€ ๋กœ๋“œ ํ…Œ์ŠคํŠธ

FrameworkQPSAvgโ€ฏLatencyP99โ€ฏLatencyMemoryCPU
Tokio340,130.921.22โ€ฏms5.96โ€ฏms128โ€ฏMB45โ€ฏ%
Hyperlane334,888.273.10โ€ฏms13.94โ€ฏms96โ€ฏMB42โ€ฏ%
Rocket298,945.311.42โ€ฏms6.67โ€ฏms156โ€ฏMB48โ€ฏ%
Rust stdโ€‘lib291,218.961.64โ€ฏms8.62โ€ฏms84โ€ฏMB44โ€ฏ%
Gin242,570.161.67โ€ฏms4.67โ€ฏms112โ€ฏMB52โ€ฏ%
Go stdโ€‘lib234,178.931.58โ€ฏms1.15โ€ฏms98โ€ฏMB49โ€ฏ%
Node stdโ€‘lib139,412.132.58โ€ฏms837.62โ€ฏยตs186โ€ฏMB65โ€ฏ%

ab โ€“ Paymentโ€‘Request ํ…Œ์ŠคํŠธ

FrameworkQPSAvgโ€ฏLatencyErrorโ€ฏRateThroughputConnโ€ฏSetup
Hyperlane316,211.633.162โ€ฏms0โ€ฏ%32,115.24โ€ฏKB/s0.3โ€ฏms
Tokio308,596.263.240โ€ฏms0โ€ฏ%28,026.81โ€ฏKB/s0.3โ€ฏms
Rocket267,931.523.732โ€ฏms0โ€ฏ%70,907.66โ€ฏKB/s0.2โ€ฏms
Rust stdโ€‘lib260,514.563.839โ€ฏms0โ€ฏ%23,660.01โ€ฏKB/s21.2โ€ฏms
Go stdโ€‘lib226,550.344.414โ€ฏms0โ€ฏ%34,071.05โ€ฏKB/s0.2โ€ฏms
Gin224,296.164.458โ€ฏms0โ€ฏ%31,760.69โ€ฏKB/s0.2โ€ฏms
Node stdโ€‘lib85,357.1811.715โ€ฏms81.2โ€ฏ%4,961.70โ€ฏKB/s33.5โ€ฏms

๐Ÿ”’ Keepโ€‘Alive ๋น„ํ™œ์„ฑํ™” (Shortโ€‘Connection ์‹œ๋‚˜๋ฆฌ์˜ค)

Shortโ€‘connection ํŠธ๋ž˜ํ”ฝ์€ ์ „์ฒด ๋ถ€ํ•˜์˜ **โ‰ˆโ€ฏ30โ€ฏ%**๋ฅผ ์ฐจ์ง€ํ•˜์ง€๋งŒ, ๊ฒฐ์ œ, ๋กœ๊ทธ์ธ ๋“ฑ์— ํ•„์ˆ˜์ ์ž…๋‹ˆ๋‹ค.

wrk โ€“ Loginโ€‘Request ํ…Œ์ŠคํŠธ

FrameworkQPSAvgโ€ฏLatencyConnโ€ฏSetupMemoryErrorโ€ฏRate
Hyperlane51,031.273.51โ€ฏms0.8โ€ฏms64โ€ฏMB0โ€ฏ%
Tokio49,555.873.64โ€ฏms0.9โ€ฏms72โ€ฏMB0โ€ฏ%
Rocket49,345.763.70โ€ฏms1.1โ€ฏms88โ€ฏMB0โ€ฏ%
Gin40,149.754.69โ€ฏms1.3โ€ฏms76โ€ฏMB0โ€ฏ%
Go stdโ€‘lib38,364.064.96โ€ฏms1.5โ€ฏms68โ€ฏMB0โ€ฏ%
Rust stdโ€‘lib30,142.5513.39โ€ฏms39.09โ€ฏms56โ€ฏMB0โ€ฏ%
Node stdโ€‘lib28,286.964.76โ€ฏms3.48โ€ฏms92โ€ฏMB0.1โ€ฏ%

ab โ€“ Paymentโ€‘Callback ํ…Œ์ŠคํŠธ

FrameworkQPSAvgโ€ฏLatencyErrorโ€ฏRateThroughputConnโ€ฏReuse
Tokio51,825.1319.296โ€ฏms0โ€ฏ%4,453.72โ€ฏKB/s0โ€ฏ%
Hyperlane51,554.4719.397โ€ฏms0โ€ฏ%5,387.04โ€ฏKB/s0โ€ฏ%
Rocket49,621.0220.153โ€ฏms0โ€ฏ%11,969.13โ€ฏKB/s0โ€ฏ%
Go stdโ€‘lib47,915.2020.870โ€ฏms0โ€ฏ%6,972.04โ€ฏKB/s0โ€ฏ%
Gin47,081.0521.240โ€ฏms0โ€ฏ%6,436.86โ€ฏKB/s0โ€ฏ%
Node stdโ€‘lib44,763.1122.340โ€ฏms0โ€ฏ%4,983.39โ€ฏKB/s0โ€ฏ%
Rust stdโ€‘lib31,511.0031.735โ€ฏms0โ€ฏ%2,707.98โ€ฏKB/s0โ€ฏ%

๐ŸŽฏ ์‹ฌ์ธต ๊ธฐ์ˆ  ๋ถ„์„

๐Ÿš€ ๋ฉ”๋ชจ๋ฆฌ ๊ด€๋ฆฌ ๋น„๊ต

๋ฉ”๋ชจ๋ฆฌ ์‚ฌ์šฉ๋Ÿ‰์€ ์žฅ๊ธฐ ์•ˆ์ •์„ฑ์˜ ์ฃผ์š” ๊ฒฐ์ • ์š”์ธ์ž…๋‹ˆ๋‹ค.

  • Hyperlane Framework โ€“ objectโ€‘pool + zeroโ€‘copy ์ „๋žต์„ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค. 1โ€ฏM ์—ฐ๊ฒฐ ๋ถ€ํ•˜ ํ…Œ์ŠคํŠธ์—์„œ 96โ€ฏMB๋งŒ ์‚ฌ์šฉํ–ˆ์œผ๋ฉฐ, ๋™๋ฃŒ๋“ค๋ณด๋‹ค ํ›จ์”ฌ ์ ์Šต๋‹ˆ๋‹ค.
  • Node.js โ€“ ๋ฉ”๋ชจ๋ฆฌ๊ฐ€ ~1โ€ฏGB์— ๋„๋‹ฌํ•˜๋ฉด V8 ๊ฐ€๋น„์ง€ ์ปฌ๋ ‰ํ„ฐ๊ฐ€ ๊ธ‰์ฆํ•˜์—ฌ GC ์ผ์‹œ ์ •์ง€ >โ€ฏ200โ€ฏms๊ฐ€ ๋ฐœ์ƒํ•˜๊ณ , ์ด๋Š” ๋†’์€ ๋ถ€ํ•˜์—์„œ ์ง€์—ฐ ์‹œ๊ฐ„์— ์ง์ ‘์ ์ธ ์˜ํ–ฅ์„ ์ค๋‹ˆ๋‹ค.

โšก ์—ฐ๊ฒฐ ๊ด€๋ฆฌ ํšจ์œจ์„ฑ

์‹œ๋‚˜๋ฆฌ์˜ค๊ด€์ฐฐ
Shortโ€‘ConnectionHyperlane์˜ ์—ฐ๊ฒฐ ์„ค์ • ์‹œ๊ฐ„ 0.8โ€ฏms vs. Rust stdโ€‘lib์˜ 39โ€ฏms โ†’ ๋Œ€๊ทœ๋ชจ TCP ์Šคํƒ ์ตœ์ ํ™”.
Longโ€‘ConnectionTokio๊ฐ€ ๊ฐ€์žฅ ๋‚ฎ์€ **P99 ์ง€์—ฐ ์‹œ๊ฐ„ (5.96โ€ฏms)**์„ ๋‹ฌ์„ฑํ–ˆ์œผ๋ฉฐ, ์ด๋Š” ๋›ฐ์–ด๋‚œ ์—ฐ๊ฒฐ ์žฌ์‚ฌ์šฉ ์ฒ˜๋ฆฌ ๋Šฅ๋ ฅ์„ ๋‚˜ํƒ€๋‚ด์ง€๋งŒ ๋ฉ”๋ชจ๋ฆฌ ์‚ฌ์šฉ๋Ÿ‰์€ Hyperlane๋ณด๋‹ค ๋†’์Šต๋‹ˆ๋‹ค.

๐Ÿ”ง CPU ์‚ฌ์šฉ ํšจ์œจ์„ฑ

  • Hyperlane Framework๋Š” ์žฅยท๋‹จ๊ธฐ ์—ฐ๊ฒฐ ํ…Œ์ŠคํŠธ ๋ชจ๋‘์—์„œ ์ผ๊ด€๋˜๊ฒŒ **์ตœ์ € CPU ์‚ฌ์šฉ๋ฅ  (โ‰ˆโ€ฏ42โ€ฏ%)**์„ ๋ณด์—ฌ์ฃผ๋ฉฐ, ์ด๋Š” ์ฝ”์–ด๋‹น ์š”์ฒญ ์ฒ˜๋ฆฌ๋Ÿ‰์ด ๋” ๋†’์Œ์„ ์˜๋ฏธํ•ฉ๋‹ˆ๋‹ค.

๐Ÿ“Œ Highโ€‘Concurrency ์Šคํƒ ์„ ํƒ์„ ์œ„ํ•œ ์š”์ 

  1. Keepโ€‘Aliveโ€‘Heavy Workloads โ€“ ์ดˆ์ €์ง€์—ฐ tail latency๋ฅผ ์œ„ํ•ด Tokio๋ฅผ ์„ ํ˜ธํ•˜๊ณ , ๋ฉ”๋ชจ๋ฆฌ ์˜ˆ์‚ฐ์ด ์ œํ•œ์ ์ด๋ฉด Hyperlane์„ ๊ณ ๋ คํ•˜์‹ญ์‹œ์˜ค.
  2. Shortโ€‘Connectionโ€‘Intensive Services โ€“ Hyperlane์˜ ๋น ๋ฅธ ์—ฐ๊ฒฐ ์„ค์ •๊ณผ ๋‚ฎ์€ CPU ์‚ฌ์šฉ๋Ÿ‰์ด ๊ฐ•๋ ฅํ•œ ํ›„๋ณด๊ฐ€ ๋ฉ๋‹ˆ๋‹ค.
  3. Node.js โ€“ ํŠธ๋ž˜ํ”ฝ์ด ์ ์€ ์„œ๋น„์Šค์— ์ ํ•ฉํ•˜์ง€๋งŒ, ๋†’์€ ๋™์‹œ์„ฑ์—์„œ GC๋กœ ์ธํ•œ ์ง€์—ฐ ์ŠคํŒŒ์ดํฌ์— ์ฃผ์˜ํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.
  4. Go & Gin โ€“ ๊ท ํ˜• ์žกํžŒ ์„ฑ๋Šฅ์„ ์ œ๊ณตํ•˜๋ฉฐ, Go ํ‘œ์ค€ ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ๋Š” ์ง€์—ฐ ์‹œ๊ฐ„ ๋ฉด์—์„œ ๊ฒฝ์Ÿ๋ ฅ์ด ์žˆ์ง€๋งŒ ๋ฉ”๋ชจ๋ฆฌ ํšจ์œจ์„ฑ์—์„œ๋Š” ์•ฝ๊ฐ„ ๋’ค์ฒ˜์ง‘๋‹ˆ๋‹ค.

์˜ฌ๋ฐ”๋ฅธ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์„ ํƒํ•˜๋Š” ๊ฒƒ์€ ์ง€์—ฐ ์‹œ๊ฐ„, ๋ฉ”๋ชจ๋ฆฌ, CPU ์‚ฌ์ด์˜ ํŠธ๋ ˆ์ด๋“œ์˜คํ”„์ž…๋‹ˆ๋‹ค. ์œ„ ๋ฐ์ดํ„ฐ๋Š” ๋Œ€๊ทœ๋ชจ ์ „์ž์ƒ๊ฑฐ๋ž˜ ํ™˜๊ฒฝ์—์„œ ํ•ด๋‹น ๊ฒฐ์ •์„ ๋‚ด๋ฆฌ๊ธฐ ์œ„ํ•œ ๊ตฌ์ฒด์ ์ด๊ณ  ํ”„๋กœ๋•์…˜ ์ˆ˜์ค€์˜ ์ฐธ๊ณ  ์ž๋ฃŒ๋ฅผ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค.

Node.js CPU Issues

Node.js ํ‘œ์ค€ ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ๋Š” V8 ์—”์ง„์˜ ์ธํ„ฐํ”„๋ฆฌํ„ฐ ์˜ค๋ฒ„ํ—ค๋“œ์™€ ๊ฐ€๋น„์ง€ ์ปฌ๋ ‰์…˜ ๋•Œ๋ฌธ์— CPU๋ฅผ **65โ€ฏ%**๊นŒ์ง€ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๊ณ ๋™์‹œ์„ฑ ์ƒํ™ฉ์—์„œ๋Š” ์„œ๋ฒ„ ๋ถ€ํ•˜๊ฐ€ ๊ณผ๋„ํ•˜๊ฒŒ ์ฆ๊ฐ€ํ•ฉ๋‹ˆ๋‹ค.

๐Ÿ’ป Code Implementation Details Analysis

๐Ÿข Performance Bottlenecks in Node.js Implementation

const http = require('http');

const server = http.createServer((req, res) => {
  // This simple handler function actually has multiple performance issues
  res.writeHead(200, { 'Content-Type': 'text/plain' });
  res.end('Hello');
});

server.listen(60000, '127.0.0.1');

Problem Analysis

IssueDescription
Frequent Memory Allocation๊ฐ ์š”์ฒญ๋งˆ๋‹ค ์ƒˆ๋กœ์šด ์‘๋‹ต ๊ฐ์ฒด๊ฐ€ ์ƒ์„ฑ๋ฉ๋‹ˆ๋‹ค.
String Concatenation Overheadres.end()๋Š” ๋‚ด๋ถ€ ๋ฌธ์ž์—ด ์—ฐ์‚ฐ์„ ์ˆ˜ํ–‰ํ•ฉ๋‹ˆ๋‹ค.
Eventโ€‘Loop Blocking๋™๊ธฐ ์ž‘์—…์€ ๋‹จ์ผ ์Šค๋ ˆ๋“œ ์ด๋ฒคํŠธ ๋ฃจํ”„๋ฅผ ์ฐจ๋‹จํ•ฉ๋‹ˆ๋‹ค.
Lack of Connection Pool๊ฐ ์—ฐ๊ฒฐ์ด ๋…๋ฆฝ์ ์œผ๋กœ ์ฒ˜๋ฆฌ๋˜์–ด ์žฌ์‚ฌ์šฉ์ด ์ด๋ฃจ์–ด์ง€์ง€ ์•Š์Šต๋‹ˆ๋‹ค.

๐Ÿน Concurrency Advantages of Go Implementation

package main

import (
	"fmt"
	"net/http"
)

func handler(w http.ResponseWriter, r *http.Request) {
	fmt.Fprintf(w, "Hello")
}

func main() {
	http.HandleFunc("/", handler)
	http.ListenAndServe(":60000", nil)
}

Advantage Analysis

AdvantageExplanation
Lightweight Goroutines์ˆ˜์ฒœ ๊ฐœ์˜ Goroutine์„ ์ตœ์†Œํ•œ์˜ ์˜ค๋ฒ„ํ—ค๋“œ๋กœ ์ƒ์„ฑํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
Builtโ€‘in Concurrency Safety์ฑ„๋„๊ณผ ๋ ˆ์ด์Šค ๋””ํ…ํ„ฐ๊ฐ€ ๋ฐ์ดํ„ฐ ๋ ˆ์ด์Šค๋ฅผ ๋ฐฉ์ง€ํ•ฉ๋‹ˆ๋‹ค.
Optimized Standard Librarynet/http๋Š” ์„ฑ๋Šฅ์— ๋งž๊ฒŒ ๊ณ ๋„๋กœ ํŠœ๋‹๋˜์—ˆ์Šต๋‹ˆ๋‹ค.

Disadvantage Analysis

DisadvantageExplanation
GC Pressure๋งŽ์€ ์ˆ˜์˜ ๋‹จ๋ช… ๊ฐ์ฒด๊ฐ€ GC ์ž‘์—…์„ ์ฆ๊ฐ€์‹œํ‚ฌ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
Memory UsageGoroutine ์Šคํƒ์€ ๋น„๊ต์  ํฌ๊ฒŒ ์‹œ์ž‘ํ•ฉ๋‹ˆ๋‹ค (โ‰ˆ2โ€ฏKB).
Connection Management๊ธฐ๋ณธ ์—ฐ๊ฒฐ ํ’€์€ ์ผ๋ถ€ ๋งž์ถคํ˜• ์†”๋ฃจ์…˜๋งŒํผ ์œ ์—ฐํ•˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค.

๐Ÿš€ Systemโ€‘Level Optimization of Rust Implementation

use std::io::prelude::*;
use std::net::{TcpListener, TcpStream};

fn handle_client(mut stream: TcpStream) {
    let response = "HTTP/1.1 200 OK\r\n\r\nHello";
    stream.write_all(response.as_bytes()).unwrap();
    stream.flush().unwrap();
}

fn main() {
    let listener = TcpListener::bind("127.0.0.1:60000").unwrap();

    for stream in listener.incoming() {
        let stream = stream.unwrap();
        handle_client(stream);
    }
}

Advantage Analysis

AdvantageExplanation
Zeroโ€‘Cost Abstractions์ปดํŒŒ์ผ ์‹œ ์ตœ์ ํ™”๊ฐ€ ์ด๋ฃจ์–ด์ง€๋ฉฐ ๋Ÿฐํƒ€์ž„ ์˜ค๋ฒ„ํ—ค๋“œ๊ฐ€ ์—†์Šต๋‹ˆ๋‹ค.
Memory Safety์†Œ์œ ๊ถŒ์ด ๋ฉ”๋ชจ๋ฆฌ ๋ˆ„์ˆ˜์™€ ๋ฐ์ดํ„ฐ ๋ ˆ์ด์Šค๋ฅผ ๋ฐฉ์ง€ํ•ฉ๋‹ˆ๋‹ค.
No GC Pauses๊ฐ€๋น„์ง€ ์ปฌ๋ ‰์…˜ ์ค‘๋‹จ ์—†์ด ์˜ˆ์ธก ๊ฐ€๋Šฅํ•œ ์ง€์—ฐ ์‹œ๊ฐ„์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค.

Disadvantage Analysis

DisadvantageExplanation
Development Complexity์ˆ˜๋ช… ๊ด€๋ฆฌ๊ฐ€ ์ดˆ๋ณด์ž์—๊ฒŒ ์–ด๋ ค์šธ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
Compilation Time์ œ๋„ค๋ฆญ์„ ๋งŽ์ด ์‚ฌ์šฉํ•˜๋ฉด ๋นŒ๋“œ ์‹œ๊ฐ„์ด ๋Š˜์–ด๋‚  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
Ecosystem MaturityGo๋‚˜ Node.js์— ๋น„ํ•ด ์ƒํƒœ๊ณ„๊ฐ€ ์ž‘์Šต๋‹ˆ๋‹ค.

๐ŸŽฏ Production Environment Deployment Recommendations

๐Ÿช Eโ€‘commerce System Architecture

๊ณ„์ธตํ˜• ์•„ํ‚คํ…์ฒ˜๋Š” ํ”„๋กœ๋•์…˜ ํ™˜๊ฒฝ์—์„œ ์ž˜ ์ž‘๋™ํ•ฉ๋‹ˆ๋‹ค:

Access Layer

  • ์ธ๋ฐ”์šด๋“œ ์š”์ฒญ ์ฒ˜๋ฆฌ๋ฅผ ์œ„ํ•ด Hyperlane ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค.
  • ์—ฐ๊ฒฐ ํ’€ ํฌ๊ธฐ๋ฅผ CPU ์ฝ”์–ด ์ˆ˜โ€ฏร—โ€ฏ2โ€“4 ๋กœ ์„ค์ •ํ•ฉ๋‹ˆ๋‹ค.
  • Keepโ€‘Alive ๋ฅผ ํ™œ์„ฑํ™”ํ•˜์—ฌ ์—ฐ๊ฒฐ ์„ค์ • ์˜ค๋ฒ„ํ—ค๋“œ๋ฅผ ์ค„์ž…๋‹ˆ๋‹ค.

Business Layer

  • ๋น„๋™๊ธฐ ์ž‘์—… ์‹คํ–‰์„ ์œ„ํ•ด Tokio ๋ฅผ ํ™œ์šฉํ•ฉ๋‹ˆ๋‹ค.
  • ํ•ฉ๋ฆฌ์ ์ธ ํƒ€์ž„์•„์›ƒ ๊ฐ’์„ ๊ตฌ์„ฑํ•ฉ๋‹ˆ๋‹ค.
  • circuitโ€‘breaker ํŒจํ„ด์„ ๊ตฌํ˜„ํ•ฉ๋‹ˆ๋‹ค.

Data Layer

  • ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค ์ ‘๊ทผ์„ ์œ„ํ•ด ์—ฐ๊ฒฐ ํ’€์„ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค.
  • readโ€‘write separation ์„ ์ ์šฉํ•ฉ๋‹ˆ๋‹ค.
  • ์ ์ ˆํ•œ ์บ์‹ฑ ์ „๋žต์„ ์ฑ„ํƒํ•ฉ๋‹ˆ๋‹ค.

๐Ÿ’ณ Payment System Optimization

๊ฒฐ์ œ ์„œ๋น„์Šค๋Š” ์ดˆ์ €์ง€์—ฐ ๋ฐ ๋†’์€ ์‹ ๋ขฐ์„ฑ์„ ์š”๊ตฌํ•ฉ๋‹ˆ๋‹ค.

Connection Management

  • Hyperlane์˜ ์งง์€ ์—ฐ๊ฒฐ ์ตœ์ ํ™”๋ฅผ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค.
  • TCP Fast Open ์„ ํ™œ์„ฑํ™”ํ•ฉ๋‹ˆ๋‹ค.
  • ๊ฐ€๋Šฅํ•œ ํ•œ ์—ฐ๊ฒฐ์„ ์žฌ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค.

Error Handling

  • ์ง€์ˆ˜ ๋ฐฑ์˜คํ”„๋ฅผ ์ ์šฉํ•œ ์žฌ์‹œ๋„ ๋กœ์ง์„ ๊ตฌํ˜„ํ•ฉ๋‹ˆ๋‹ค.
  • ํ•ฉ๋ฆฌ์ ์ธ ํƒ€์ž„์•„์›ƒ ์ž„๊ณ„๊ฐ’์„ ์„ค์ •ํ•ฉ๋‹ˆ๋‹ค.
  • ์‚ฌํ›„ ๋ถ„์„์„ ์œ„ํ•ด ์ƒ์„ธ ์˜ค๋ฅ˜ ์ •๋ณด๋ฅผ ๋กœ๊ทธ์— ๊ธฐ๋กํ•ฉ๋‹ˆ๋‹ค.

Monitoring & Alerts

  • ์‹ค์‹œ๊ฐ„์œผ๋กœ QPS์™€ ๋ ˆ์ดํ„ด์Šค๋ฅผ ์ถ”์ ํ•ฉ๋‹ˆ๋‹ค.
  • SLA ์š”๊ตฌ์‚ฌํ•ญ์— ๋งž๋Š” ์•Œ๋ฆผ ์ž„๊ณ„๊ฐ’์„ ์ •์˜ํ•ฉ๋‹ˆ๋‹ค.
  • ๋ถ€ํ•˜ ์ง€ํ‘œ์— ๋”ฐ๋ผ ์ž๋™ ์Šค์ผ€์ผ๋ง์„ ํ™œ์„ฑํ™”ํ•ฉ๋‹ˆ๋‹ค.

๐Ÿ“Š Realโ€‘time Statistics System

๋Œ€์šฉ๋Ÿ‰ ๋ฐ์ดํ„ฐ ์ŠคํŠธ๋ฆผ์„ ์ฒ˜๋ฆฌํ•˜๋ ค๋ฉด ์‹ ์ค‘ํ•œ ์„ค๊ณ„๊ฐ€ ํ•„์š”ํ•ฉ๋‹ˆ๋‹ค.

Data Processing

  • Tokio์˜ ๋น„๋™๊ธฐ ๊ธฐ๋Šฅ์„ ํ™œ์šฉํ•ฉ๋‹ˆ๋‹ค.
  • ๋“ค์–ด์˜ค๋Š” ์ด๋ฒคํŠธ๋ฅผ ๋ฐฐ์น˜ ์ฒ˜๋ฆฌํ•˜์—ฌ ๋ฉ”์‹œ์ง€๋‹น ์˜ค๋ฒ„ํ—ค๋“œ๋ฅผ ๊ฐ์†Œ์‹œํ‚ต๋‹ˆ๋‹ค.
  • ์›Œํฌ๋กœ๋“œ ํŠน์„ฑ์— ๋งž๊ฒŒ ๋ฒ„ํผ ํฌ๊ธฐ๋ฅผ ์กฐ์ •ํ•ฉ๋‹ˆ๋‹ค.

Memory Management

  • ํ• ๋‹น์„ ์ตœ์†Œํ™”ํ•˜๊ธฐ ์œ„ํ•ด ๊ฐ์ฒด ํ’€์„ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค.
  • ๋ฐ์ดํ„ฐ ํŒŒํ‹ฐ์…”๋‹(์ƒค๋”ฉ)์œผ๋กœ ์ง€์—ญ์„ฑ์„ ํ–ฅ์ƒ์‹œํ‚ต๋‹ˆ๋‹ค.
  • GC ๊ธฐ๋ฐ˜ ์–ธ์–ด๋ฅผ ์‚ฌ์šฉํ•  ๊ฒฝ์šฐ ์ ์ ˆํ•œ GC ์ „๋žต์„ ์ ์šฉํ•ฉ๋‹ˆ๋‹ค.

Performance Monitoring

  • ๋ฉ”๋ชจ๋ฆฌ ์‚ฌ์šฉ๋Ÿ‰์„ ์ง€์†์ ์œผ๋กœ ๋ชจ๋‹ˆํ„ฐ๋งํ•ฉ๋‹ˆ๋‹ค.
  • GC ๋กœ๊ทธ๋ฅผ ๋ถ„์„ํ•ฉ๋‹ˆ๋‹ค( GC ๊ธฐ๋ฐ˜ ๋Ÿฐํƒ€์ž„์˜ ๊ฒฝ์šฐ).
  • ํ•ซ ๊ฒฝ๋กœ๋ฅผ ํ”„๋กœํŒŒ์ผ๋งํ•˜๊ณ  ํ•ต์‹ฌ ์ฝ”๋“œ ์„น์…˜์„ ์ตœ์ ํ™”ํ•ฉ๋‹ˆ๋‹ค.

๐Ÿ”ฎ ๋ฏธ๋ž˜ ๊ธฐ์ˆ  ํŠธ๋ Œ๋“œ

๐Ÿš€ ์„ฑ๋Šฅ ์ตœ์ ํ™” ๋ฐฉํ–ฅ

  1. ํ•˜๋“œ์›จ์–ด ๊ฐ€์†

    • GPU ๊ธฐ๋ฐ˜ ๋ฐ์ดํ„ฐ ์ฒ˜๋ฆฌ.
    • ๊ณ ์ฒ˜๋ฆฌ๋Ÿ‰ ๋„คํŠธ์›Œํ‚น์„ ์œ„ํ•œ DPDK.
    • ์ œ๋กœ ์นดํ”ผ ๋ฐ์ดํ„ฐ ์ „์†ก.
  2. ์•Œ๊ณ ๋ฆฌ์ฆ˜ ์ตœ์ ํ™”

    • ๋” ์Šค๋งˆํŠธํ•œ ์ž‘์—… ์Šค์ผ€์ค„๋ง ์•Œ๊ณ ๋ฆฌ์ฆ˜.
    • ๊ณ ๊ธ‰ ๋ฉ”๋ชจ๋ฆฌ ํ• ๋‹น ์ „๋žต.
    • ์ง€๋Šฅํ˜• ์—ฐ๊ฒฐ ๊ด€๋ฆฌ ์ •์ฑ….
  3. ์•„ํ‚คํ…์ฒ˜ ์ง„ํ™”

    • ๋งˆ์ดํฌ๋กœ์„œ๋น„์Šค ์•„ํ‚คํ…์ฒ˜๋กœ์˜ ์ „ํ™˜.
    • ์„œ๋น„์Šค ๋ฉ”์‰ฌ ์†”๋ฃจ์…˜ ๋„์ž….
    • ์ง€์—ฐ ๋ฏผ๊ฐ ์›Œํฌ๋กœ๋“œ๋ฅผ ์œ„ํ•œ ์—ฃ์ง€ ์ปดํ“จํŒ….

๐Ÿ”ง ๊ฐœ๋ฐœ ๊ฒฝํ—˜ ๊ฐœ์„ 

AreaImprovements
Toolchain๋” ๋‚˜์€ ๋””๋ฒ„๊ฑฐ, ํ•ซ ๋ฆฌ๋กœ๋”ฉ, ๋น ๋ฅธ ์ปดํŒŒ์ผ.
Framework Simplification๋ณด์ผ๋Ÿฌํ”Œ๋ ˆ์ดํŠธ ๊ฐ์†Œ, ํ•ฉ๋ฆฌ์ ์ธ ๊ธฐ๋ณธ๊ฐ’ ์ œ๊ณต, โ€œ๊ตฌ์„ฑ๋ณด๋‹ค ๊ด€๋ก€โ€ ์ฑ„ํƒ.
Documentationํฌ๊ด„์ ์ด๊ณ  ์ตœ์‹  ๊ฐ€์ด๋“œ์™€ ์˜ˆ์ œ.

์ •๋ฆฌ๋œ ๋งˆํฌ๋‹ค์šด ๋.

๊ฐœ์„ 

  • ์ž์„ธํ•œ ์„ฑ๋Šฅ ํŠœ๋‹ ๊ฐ€์ด๋“œ ์ œ๊ณต
  • ๋ชจ๋ฒ” ์‚ฌ๋ก€ ์˜ˆ์ œ ๊ตฌํ˜„
  • ํ™œ๋ฐœํ•œ ์ปค๋ฎค๋‹ˆํ‹ฐ ๊ตฌ์ถ•

๐ŸŽฏ ์š”์•ฝ

์ด ์‹ฌ์ธต์ ์ธ ํ”„๋กœ๋•์…˜ ํ™˜๊ฒฝ ํ…Œ์ŠคํŠธ๋ฅผ ํ†ตํ•ด ๋‚˜๋Š” ๊ณ ๋™์‹œ์„ฑ ์‹œ๋‚˜๋ฆฌ์˜ค์—์„œ ์›น ํ”„๋ ˆ์ž„์›Œํฌ์˜ ์„ฑ๋Šฅ์„ ์žฌ์ธ์‹ํ•˜๊ฒŒ ๋˜์—ˆ์Šต๋‹ˆ๋‹ค.

  • Hyperlaneโ€ฏโ€”โ€ฏ๋ฉ”๋ชจ๋ฆฌ ๊ด€๋ฆฌ์™€ CPU ์‚ฌ์šฉ ํšจ์œจ์„ฑ์—์„œ ๋…ํŠนํ•œ ์žฅ์ ์„ ์ œ๊ณตํ•˜์—ฌ ์ž์›์— ๋ฏผ๊ฐํ•œ ์‹œ๋‚˜๋ฆฌ์˜ค์— ํŠนํžˆ ์ ํ•ฉํ•ฉ๋‹ˆ๋‹ค.
  • Tokioโ€ฏโ€”โ€ฏ์—ฐ๊ฒฐ ๊ด€๋ฆฌ์™€ ์ง€์—ฐ ์‹œ๊ฐ„ ์ œ์–ด์— ๋›ฐ์–ด๋‚˜๋ฉฐ, ์—„๊ฒฉํ•œ ์ง€์—ฐ ์‹œ๊ฐ„ ์š”๊ตฌ ์‚ฌํ•ญ์ด ์žˆ๋Š” ์ƒํ™ฉ์— ์ด์ƒ์ ์ž…๋‹ˆ๋‹ค.

ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์„ ํƒํ•  ๋•Œ๋Š” ์„ฑ๋Šฅ, ๊ฐœ๋ฐœ ํšจ์œจ์„ฑ, ํŒ€ ์—ญ๋Ÿ‰ ๋“ฑ ์—ฌ๋Ÿฌ ์š”์†Œ๋ฅผ ๊ณ ๋ คํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค. โ€œ์ตœ๊ณ โ€์˜ ํ”„๋ ˆ์ž„์›Œํฌ๋Š” ์—†์œผ๋ฉฐ, ์ฃผ์–ด์ง„ ์ƒํ™ฉ์— ๊ฐ€์žฅ ์ ํ•ฉํ•œ ํ”„๋ ˆ์ž„์›Œํฌ๋งŒ ์กด์žฌํ•ฉ๋‹ˆ๋‹ค. ๋‚ด ๊ฒฝํ—˜์ด ๋ชจ๋‘๊ฐ€ ๋” ํ˜„๋ช…ํ•œ ๊ธฐ์ˆ  ์„ ํƒ์„ ํ•˜๋Š” ๋ฐ ๋„์›€์ด ๋˜๊ธธ ๋ฐ”๋ž๋‹ˆ๋‹ค.

GitHub Homepage: hyperlaneโ€‘dev/hyperlane

Back to Blog

๊ด€๋ จ ๊ธ€

๋” ๋ณด๊ธฐ ยป

๐Ÿ”ฅ_๊ณ ๋™์‹œ์„ฑ_ํ”„๋ ˆ์ž„์›Œํฌ_์„ ํƒ_๊ธฐ์ˆ _๊ฒฐ์ •[20251230135344]

๐Ÿ’ก ์‹ค์ œ ํ”„๋กœ๋•์…˜ ํ™˜๊ฒฝ์—์„œ์˜ ๋„์ „ ๊ณผ์ œ ์šฐ๋ฆฌ eโ€‘commerce ํ”Œ๋žซํผ ์žฌ๊ตฌ์ถ• ํ”„๋กœ์ ํŠธ์—์„œ ์ผ์ผ ํ™œ์„ฑ ์‚ฌ์šฉ์ž ์•ฝ 1,000๋งŒ ๋ช…์„ ๋Œ€์ƒ์œผ๋กœ ์šฐ๋ฆฌ๋Š” ๋ฐ˜๋ณต์ ์œผ๋กœ ๋‹ค์Œ๊ณผ ๊ฐ™์€ ์ „ํ˜•์ ์ธ โ€ฆ

๐Ÿ”ฅ_๊ณ ์„ฑ๋Šฅ_๋™์‹œ์„ฑ_ํ”„๋ ˆ์ž„์›Œํฌ_์„ ํƒ_๊ธฐ์ˆ _๊ฒฐ์ •[20251229165950]

์†Œ๊ฐœ ์ˆ˜๋งŽ์€ ํ”„๋กœ๋•์…˜ ํ™˜๊ฒฝ ๋„์ „์— ์ง๋ฉดํ•œ ์‹œ๋‹ˆ์–ด ์—”์ง€๋‹ˆ์–ด๋กœ์„œ, ์˜ฌ๋ฐ”๋ฅธ ๊ธฐ์ˆ ์„ ์„ ํƒํ•˜๋Š” ๊ฒƒ์ด ์–ผ๋งˆ๋‚˜ ์ค‘์š”ํ•œ์ง€ ๊นŠ์ด ์ดํ•ดํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.

๐Ÿ”ฅ_๊ณ ๋™์‹œ์„ฑ_ํ”„๋ ˆ์ž„์›Œํฌ_์„ ํƒ_๊ธฐ์ˆ _๊ฒฐ์ •[20260101032811]

๐Ÿ“Š Productionโ€‘Environment Performance Analysis ์„ ์ž„ ์—”์ง€๋‹ˆ์–ด๋กœ์„œ ์ˆ˜๋งŽ์€ ํ”„๋กœ๋•์…˜ ๊ณผ์ œ์— ์ง๋ฉดํ•ด ๋ณธ ๋‚˜๋Š” ์˜ฌ๋ฐ”๋ฅธ โ€ฆ ์„ ํƒ์ด ์–ผ๋งˆ๋‚˜ ์ค‘์š”ํ•œ์ง€ ์•Œ๊ณ  ์žˆ๋‹ค.