How to Install Z-Image Turbo Locally
Source: Dev.to
Overview
This guide explains how to set up Z-Image Turbo on your local machine. The model uses a 6B‑parameter architecture to generate high‑quality images with exceptional text rendering capabilities.
Online Alternative
If you don’t have a GPU or prefer not to install anything locally, you can use the online version:
- Z‑Image Online – Free AI generator with perfect text rendering in 20+ languages, 4K photorealistic output, no GPU required.
System Requirements
| Component | Recommended |
|---|---|
| GPU | 16 GB VRAM (e.g., RTX 3090/4090 or comparable data‑center cards). Lower‑memory GPUs can work with offloading but will be slower. |
| Python | 3.9 or newer |
| CUDA | Compatible with your GPU drivers (the example uses CUDA 12.4) |
Create a Virtual Environment
# Create the environment
python -m venv zimage-env
# Activate the environment
# Linux / macOS
source zimage-env/bin/activate
# Windows
zimage-env\Scripts\activate
Install Dependencies
# Install PyTorch for CUDA 12.4 (adjust the index URL for other CUDA versions)
pip install torch --index-url https://download.pytorch.org/whl/cu124
# Install diffusers directly from source
pip install git+https://github.com/huggingface/diffusers
# Additional libraries
pip install transformers accelerate safetensors
Create a Python Script
Save the following as generate.py (or any name you prefer).
import torch
from diffusers import ZImagePipeline
# Load the model from Hugging Face
pipe = ZImagePipeline.from_pretrained(
"Tongyi-MAI/Z-Image-Turbo",
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=False,
)
# Move pipeline to GPU
pipe.to("cuda")
Generate an Image
Add this code to the script to produce an image:
prompt = (
"City street at night with clear bilingual store signs, warm lighting, "
"and detailed reflections on wet pavement."
)
image = pipe(
prompt=prompt,
height=1024,
width=1024,
num_inference_steps=9,
guidance_scale=0.0,
generator=torch.Generator("cuda").manual_seed(123),
).images[0]
image.save("z_image_turbo_city.png")
print("Image saved successfully!")
Optional Optimizations
Flash Attention 2
# Switch attention backend to Flash Attention 2
pipe.transformer.set_attention_backend("flash")
Compile the Transformer (requires PyTorch 2.0+)
# Optional: compile for faster inference
# pipe.transformer.compile()
CPU Offloading (Low‑VRAM Systems)
If your GPU has less than 16 GB VRAM, enable CPU offloading to move parts of the model to system RAM:
pipe.enable_model_cpu_offload()
Note: Offloading allows the model to run on smaller GPUs, but generation will be slower.