Building a Quantum-Enhanced API Gateway: MCP Secure Gateway

Published: (December 12, 2025 at 08:00 AM EST)
5 min read
Source: Dev.to

Source: Dev.to

Introduction

At API Days Paris 2025 the topics of Model Context Protocol (MCP), quantum‑enhanced security, and API reliability were front‑and‑center. To explore how these ideas can be applied in production, I created MCP Secure Gateway, a production‑ready API gateway that showcases:

  • Quantum Random Number Generation (QRNG) for cryptographically secure tokens
  • MCP implementation for AI‑agent interactions
  • Enterprise‑grade authentication, rate limiting, and monitoring
  • API drift detection via contract testing

The gateway is built with FastAPI and serves both as a reference implementation and a learning resource.

Quantum Random Number Generation

Traditional random number generators are deterministic; given the same seed they produce the same sequence, which can be a vulnerability for JWT IDs and other cryptographic operations. Quantum RNGs exploit quantum phenomena (e.g., vacuum fluctuations) to generate true randomness.

QRNG Providers

ProviderTypeAccessNotes
ANU (Australian National University)Free, publicHTTP APIIdeal for development and testing; uses vacuum fluctuations in a beam splitter
QuantinuumEnterpriseHTTP API (API key required)High‑throughput commercial quantum computing platform
ID QuantiqueHardware‑basedPhysical device (API key required)Banking‑grade security

QRNG Service (Python)

# qrng_service.py
import secrets
from enum import Enum
from typing import Any

class QRNGProvider(Enum):
    ANU = "anu"
    QUANTINUUM = "quantinuum"
    IDQ = "idq"

class QRNGService:
    def __init__(self, provider: QRNGProvider):
        self.current_provider = provider

    async def get_random_bytes(self, length: int = 32) -> bytes:
        """Get cryptographically secure random bytes."""
        try:
            if self.current_provider == QRNGProvider.ANU:
                return await self._get_anu_bytes(length)
            elif self.current_provider == QRNGProvider.QUANTINUUM:
                return await self._get_quantinuum_bytes(length)
            elif self.current_provider == QRNGProvider.IDQ:
                return await self._get_idq_bytes(length)
        except Exception as e:
            # Graceful fallback to classical cryptography
            if settings.QRNG_FALLBACK_ENABLED:
                return secrets.token_bytes(length)
            raise

Design note: The automatic fallback to secrets.token_bytes() guarantees that the system remains operational even if a quantum provider is unavailable, degrading security gracefully rather than catastrophically.

JWT Token Generation with Quantum IDs

Each JWT receives a unique jti (JWT Token ID) generated from quantum randomness, making token prediction and collision attacks exponentially harder.

# auth.py
import jwt
import time
from datetime import datetime, timedelta

class AuthService:
    def __init__(self, private_key: str, algorithm: str = "RS256"):
        self.private_key = private_key
        self.algorithm = algorithm

    async def create_token(self, user_id: str, token_type: str = "access") -> str:
        # Generate quantum‑backed JWT ID
        jti = await qrng_service.get_random_bytes(16).hex()

        now = datetime.utcnow()
        expire = now + timedelta(hours=1)

        payload = {
            "sub": user_id,
            "jti": jti,
            "exp": expire,
            "iat": now,
            "type": token_type,
        }

        return jwt.encode(payload, self.private_key, algorithm=self.algorithm)

Model Context Protocol (MCP) Implementation

MCP is emerging as the standard for AI‑agent communication. The gateway provides core MCP patterns for tool discovery and execution.

# mcp_routes.py
from fastapi import APIRouter
from pydantic import BaseModel
from typing import Dict, Any

router = APIRouter()

class MCPToolCall(BaseModel):
    tool: str
    arguments: Dict[str, Any]

class MCPResponse(BaseModel):
    success: bool
    result: Dict[str, Any]

@router.get("/mcp/tools")
async def list_tools():
    """List available MCP tools."""
    return [
        {
            "name": "get_weather",
            "description": "Get current weather for a location",
            "parameters": {
                "type": "object",
                "properties": {"location": {"type": "string"}},
            },
        },
        # ... more tools
    ]

@router.post("/mcp/execute")
async def execute_tool(tool_call: MCPToolCall):
    """Execute an MCP tool."""
    if tool_call.tool == "get_weather":
        return MCPResponse(
            success=True,
            result={
                "location": tool_call.arguments["location"],
                "temperature": 22,
                "condition": "Sunny",
            },
        )
    # Add handling for additional tools here

Request Correlation ID Middleware

Every request receives a correlation ID for end‑to‑end tracing.

# middleware.py
import time
from fastapi import Request, FastAPI
import logging

logger = logging.getLogger("gateway")

app = FastAPI()

@app.middleware("http")
async def log_requests(request: Request, call_next):
    correlation_id = request.headers.get(
        "X-Correlation-ID", f"req-{int(time.time() * 1000)}"
    )
    logger.info(
        "request_started",
        extra={"method": request.method, "path": request.url.path, "correlation_id": correlation_id},
    )
    response = await call_next(request)
    response.headers["X-Correlation-ID"] = correlation_id
    return response

Health Check Endpoint

Kubernetes‑ready liveness and readiness probes expose service health and feature status.

# health.py
from fastapi import APIRouter

router = APIRouter()

@router.get("/health")
async def health_check():
    return {
        "status": "healthy",
        "version": "1.0.0",
        "qrng": qrng_service.get_provider_status(),
        "features": {
            "quantum_auth": True,
            "mcp_streaming": True,
            "rate_limiting": True,
        },
    }

Observability Stack

A minimal Docker Compose setup provides the gateway, Redis, Prometheus, and Grafana.

# docker-compose.yml
services:
  gateway:
    build: .
    ports:
      - "8000:8000"
    depends_on:
      - redis
      - prometheus

  redis:
    image: redis:7-alpine

  prometheus:
    image: prom/prometheus

  grafana:
    image: grafana/grafana

Key Insights & Architectural Decisions

  1. Simplicity over over‑engineering – A straightforward FastAPI structure with clear separation of concerns makes the codebase easy to understand and extend.
  2. MCP complements, not replaces, good API design – The gateway emphasizes RESTful endpoints, consistent error handling, proper HTTP status codes, and comprehensive documentation.
  3. Contract testing prevents drift – Tests verify that public contracts (e.g., authentication responses) remain stable.

Example Contract Test

# tests/test_auth_contract.py
def test_auth_endpoint_contract(client):
    """Ensure auth endpoint maintains contract."""
    response = client.post(
        "/auth/login",
        json={"username": "demo", "password": "demo123"},
    )
    assert response.status_code == 200
    data = response.json()
    assert "access_token" in data
    assert "refresh_token" in data
    assert "token_type" in data
    assert data["token_type"] == "bearer"

Getting Started

# Clone the repository
git clone https://github.com/YOUR_USERNAME/mcp-secure-gateway.git
cd mcp-secure-gateway

# Set up a virtual environment
python -m venv venv
source venv/bin/activate

# Install dependencies
pip install -r requirements.txt

# Configure environment variables
cp .env.example .env

# Run with Docker
docker-compose up -d

# Or run locally
uvicorn app.main:app --reload

Open the interactive API docs at .

Running Tests

# All tests
pytest

# With coverage report
pytest --cov=app --cov-report=html

# Contract tests only
pytest tests/contract/ -v

Current test coverage exceeds 95 %.

Future Work

  • Rate limiting using a Redis‑backed token‑bucket algorithm
  • Token revocation list (JWT blacklist) stored in Redis
  • Multi‑tenant API key management
  • Additional MCP tools (file operations, database queries)
  • Pre‑configured Grafana dashboards for deeper observability

References

Built with ❤️ in Paris; inspired by API Days 2025.

Back to Blog

Related posts

Read more »

Renuncio a hacer consultoría de FinOps

Hace unos meses inicié a apoyar a diferentes clientes en la implementación de estrategias de optimización de recursos e infraestructura. Fue una decisión comple...