我构建了一个理解含义而非仅仅关键词的搜索引擎

发布: (2026年1月14日 GMT+8 18:47)
2 min read
原文: Dev.to

Source: Dev.to

封面图片:我构建了一个能够理解意义而不仅仅是关键词的搜索引擎

问题

关键词搜索只能匹配精确词语,无法理解语义。用户可能使用的词汇与文档中的词汇不同,导致搜索不到结果,用户体验受挫。

解决方案

一个能够理解上下文而非仅仅关键词的语义搜索 API。

文本 → 数字

使用 HuggingFace 嵌入将文档转换为 768 维向量。意义相近的文本会产生相似的向量。

智能匹配

MongoDB Atlas Vector Search 直接比较向量,实现语义相似度匹配,无需依赖词语重叠。

排序结果

对元数据(类别、日期、作者)进行加权,使最相关的结果优先展示。

技术栈

  • Node.js 与 Express
  • MongoDB Atlas Vector Search
  • HuggingFace 嵌入
  • MVC 架构

实际影响

  • 搜索 “programming” 时还能返回 “JavaScript”、 “Python”、 “coding”等相关结果。
  • 支持多语言和同义词。
  • 为 AI 风格的搜索体验和检索增强生成(RAG)系统提供动力。

开源

该项目已在 GitHub 开源: [link]

标签: AI, Machine Learning, Semantic Search, Software Engineering, Node.js, MongoDB, Tech Innovation

Back to Blog

相关文章

阅读更多 »

Rapg:基于 TUI 的密钥管理器

我们都有这种经历。你加入一个新项目,首先听到的就是:“在 Slack 的置顶消息里查找 .env 文件”。或者你有多个 .env …

技术是赋能者,而非救世主

为什么思考的清晰度比你使用的工具更重要。Technology 常被视为一种魔法开关——只要打开,它就能让一切改善。新的 software,...

踏入 agentic coding

使用 Copilot Agent 的经验 我主要使用 GitHub Copilot 进行 inline edits 和 PR reviews,让我的大脑完成大部分思考。最近我决定 t...