๐Ÿš€ 'Vector Sharding': ์•ŒํŒŒ๋ฒณ์ด ์—†๋Š” ๋„์„œ๊ด€์„ ์กฐ์งํ•˜๋Š” ๋ฐฉ๋ฒ• ๐Ÿ“š๐Ÿงฉ

๋ฐœํ–‰: (2026๋…„ 1์›” 17์ผ ์˜คํ›„ 04:42 GMT+9)
3 min read
์›๋ฌธ: Dev.to

Source: Dev.to

Welcome back to our AI at Scale series! ๐Ÿš€
In our last post we explored Semantic Cachingโ€”the โ€œbrainyโ€ way to save money and time by remembering what weโ€™ve already asked our AI. As your application grows from a few thousand users to millions, you hit a massive wall: the memory limit.

The Challenge of Vector Databases

Imagine you are the librarian of the worldโ€™s most advanced library. Instead of books being organized by title, they are organized by โ€œvibeโ€ (vectors). If someone wants a book about โ€œlonely robots in space,โ€ you have to search the entire library to find the closest match.

  • Memory: You canโ€™t fit the index of 1โ€ฏbillion โ€œvibesโ€ in a single serverโ€™s RAM.
  • Speed: Searching through a billion items for every user request is slowโ€”even for a computer.

Sharding: Splitting the Library

When one machine is too small for the job, we shard.

Sharding is the process of splitting a massive database into smaller, manageable chunks called shards. Each shard lives on a different server.

Traditional vs. Vector Sharding

Traditional DBVector DB
๊ฒฐ์ •๋ก ์  ํ‚ค(์˜ˆ: User ID)๋กœ ์ƒค๋“œ์œ ์‚ฌ์„ฑ์œผ๋กœ ์ƒค๋“œ(๋ณด๋‹ค ๋ณต์žกํ•จ)

Two Main Approaches

1. Uniform Distribution

  1. Spread your 1โ€ฏbillion vectors across 10 servers (โ‰ˆ100โ€ฏmillion each).
  2. Aggregator sends each query to all 10 servers simultaneously.
  3. Merge: Each server returns its topโ€ฏ5 matches (total 50). The aggregator picks the best of the best.

2. Metadataโ€‘Based Sharding

If your data has clear categories (e.g., โ€œLanguageโ€ or โ€œProduct Categoryโ€), shard based on those metadata tags.

  • Benefit: If a user searches only within โ€œMedical Research,โ€ you query only the โ€œMedicalโ€ shards, leaving โ€œSportsโ€ and โ€œCookingโ€ shards free for other traffic.

HNSW and Memory Constraints

Most modern vector databases use HNSW (Hierarchical Navigable Small World), a โ€œsix degrees of separationโ€ map for highโ€‘dimensional data.

  • RAM Requirement: HNSW needs to live in RAM to be fast.
  • Problem: A 500โ€ฏGB index on a server with 128โ€ฏGB RAM forces swapping to disk, turning a 50โ€ฏms search into several seconds.

Sharding keeps each HNSW index small enough to stay entirely in highโ€‘speed memory.

Tradeโ€‘offs and Engineering Considerations

  • Replication: If a shard server fails, you lose that portion of memory. Replicas of every shard are required for resilience.
  • Rebalancing: As data grows, some shards become โ€œhotter.โ€ Moving millions of vectors between servers while the system is live is a major engineering challenge.

Why Vector Sharding Matters

Vector sharding is the difference between a cool AI demo and a topโ€‘tier AI platform. It forces highโ€‘dimensional math to work within the physical limits of hardware.

Next in the โ€œAI at Scaleโ€ series: Rate Limiting for LLM APIs โ€” How to keep your API keys from melting under pressure.

Back to Blog

๊ด€๋ จ ๊ธ€

๋” ๋ณด๊ธฐ ยป

์—”ํ„ฐํ”„๋ผ์ด์ฆˆ ๊ธ‰ Node.js์™€ NestJS: ํ™•์žฅ ๊ฐ€๋Šฅํ•œ ๋ฐฑ์—”๋“œ ์•„ํ‚คํ…์ฒ˜ ๊ตฌ์ถ•

NestJS๋Š” ์—”ํ„ฐํ”„๋ผ์ด์ฆˆ Node.js ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜์„ ๊ตฌ์ถ•ํ•  ๋•Œ ์ œ๊ฐ€ ๊ฐ€์žฅ ์„ ํ˜ธํ•˜๋Š” ํ”„๋ ˆ์ž„์›Œํฌ๊ฐ€ ๋˜์—ˆ์Šต๋‹ˆ๋‹ค. ์•„๋ž˜๋Š” NestJS๊ฐ€ ๋‹๋ณด์ด๋Š” ์ฃผ์š” ์ด์œ ์™€ ์ œ๊ฐ€ ์‹ค์ œ ์šด์˜ ํ™˜๊ฒฝ์—์„œ ์–ด๋–ป๊ฒŒ ํ™œ์šฉํ•˜๊ณ  ์žˆ๋Š”์ง€์— ๋Œ€ํ•œ ๋‚ด์šฉ์ž…๋‹ˆ๋‹ค....

๋น„์ฆˆ๋‹ˆ์Šค ๋ฌธ์ œ ํ•ด๊ฒฐ์„ ์œ„ํ•œ Generative AI์˜ ์—ญ๋Ÿ‰๊ณผ ํ•œ๊ณ„ ์ดํ•ด

๐Ÿค– ์‹œํ—˜ ๊ฐ€์ด๋“œ: AI Practitioner ๋„๋ฉ”์ธ 2 โ€“ ์ƒ์„ฑ AI์˜ ๊ธฐ๋ณธ ๐Ÿ“˜ ๊ณผ์ œ ์ง„์ˆ  2.2 ๐ŸŽฏ ๋ชฉํ‘œ ์ด ๊ณผ์ œ๋Š” ์ข‹์€ ๋น„์ฆˆ๋‹ˆ์Šค ๊ฒฐ์ •์„ ๋‚ด๋ฆฌ๋Š” ๊ฒƒ์— ๊ด€ํ•œโ€ฆ

AWS์—์„œ ๋ณด์•ˆ ์ •์  ์›น์‚ฌ์ดํŠธ ํ˜ธ์ŠคํŒ…: CloudFront + Origin Access Control๊ฐ€ ์ ์šฉ๋œ ํ”„๋ผ์ด๋น— S3 ๋ฒ„ํ‚ท

์—”๋“œ ์Šคํ…Œ์ดํŠธ A: Amazon S3์— ํ˜ธ์ŠคํŒ…๋œ ์ •์  ์›น์‚ฌ์ดํŠธ๊ฐ€ Amazon CloudFront๋ฅผ ํ†ตํ•ด ์ „ ์„ธ๊ณ„์— ์ œ๊ณต๋˜๋ฉฐ ํ”„๋ผ์ด๋น— ์•ก์„ธ์Šค๋ฅผ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค. ๋ธŒ๋ผ์šฐ์ € / curl โ†“ CloudFront Distribution HTTPS โ†“ Ori...

AI SaaS ๋น„์ฆˆ๋‹ˆ์Šค๋ฅผ ๊ตฌ์ถ•ํ•  ๋•Œ ์•„๋ฌด๋„ ๋งํ•ด์ฃผ์ง€ ์•Š๋Š” ๊ฒƒ

1 ๊ท€ํ•˜์˜ ์ œํ’ˆ์€ ์•ฑ์ด ์•„๋‹™๋‹ˆ๋‹ค. ๊ทธ๊ฒƒ์€ ํ–‰๋™์ž…๋‹ˆ๋‹ค. ์ „ํ†ต์ ์ธ SaaS๊ฐ€ ํŒ๋งคํ•˜๋Š” ๊ฒƒ: - features - workflows - dashboards - permissions AI SaaS๋Š” ๋” ๋ฏธ๋ฌ˜ํ•œ ๊ฒƒ์„ ํŒ๋งคํ•ฉ๋‹ˆ๋‹ค: reliโ€ฆ