➡️ Rust Dev's Pallas Journey: Cardano in Rust Intro
Source: Dev.to
Dive into Pallas, TxPipe’s Rust toolkit for Cardano.
Modular Rust for blockchain without Haskell.
Summary of Pallas
pallas-codec – CBOR serialization/deserialization foundation
use pallas_codec::{Encode, Decode};
use pallas_codec::minicbor::Decoder;
#[derive(Encode, Decode)]
enum MyEnum {
Value(u64),
}
fn main() {
let val = MyEnum::Value(42);
let encoded = val.encode_to_vec().unwrap();
let mut decoder = Decoder::new(&encoded);
let decoded: MyEnum = decoder.decode().unwrap();
if let MyEnum::Value(n) = decoded {
println!("Decoded: {}", n);
}
}
pallas-primitives – Ledger data structs across eras
use pallas_primitives::MultiEraTx;
fn main() {
let tx_bytes = vec![]; // CBOR bytes
let tx = MultiEraTx::from_cbor_bytes(&tx_bytes).unwrap();
println!("Fee: {:?}", tx.fees());
}
pallas-crypto – Hashes, signatures, VRF for security
use pallas_crypto::{Blake2b256, Ed25519Bip32SecretKey, Ed25519Signature};
use rand::rngs::OsRng;
use rand::RngCore;
fn main() {
let mut sk_bytes = [0u8; 32];
OsRng.fill_bytes(&mut sk_bytes);
let sk = Ed25519Bip32SecretKey::from_bytes(sk_bytes).unwrap();
let data = b"test";
let sig = Ed25519Signature::sign(&sk, data);
println!("Sig valid: {}", sig.verify(&sk.public_key(), data));
}
pallas-addresses – Address encoding/decoding
use pallas_addresses::Address;
fn main() {
let addr = Address::from_bech32("addr1q...").unwrap();
if let Address::Shelley(s) = addr {
println!("Payment: {:?}", s.payment);
}
}
pallas-txbuilder – Transaction construction builder
use pallas_txbuilder::Builder;
use pallas_primitives::ProtocolParameters;
fn main() {
let params = ProtocolParameters::default();
let mut builder = Builder::new(params);
let min_fee = builder.min_fee().unwrap();
println!("Min fee: {}", min_fee);
}
pallas-traverse – Data analysis / traversal
use pallas_traverse::MultiEraBlock;
fn main() {
let block_bytes = vec![]; // Bytes
let block = MultiEraBlock::decode(&block_bytes).unwrap();
for tx in block.txs() {
println!("Inputs: {:?}", tx.inputs().len());
}
}
pallas-network – Node communication stack
use pallas_network::n2c::connect;
#[tokio::main]
async fn main() {
let _mux = connect("relay.example:3001").await.unwrap();
}
pallas-hardano – Haskell node artifact interop
use pallas_hardano::ImmutableFile;
use std::path::PathBuf;
fn main() {
let path = PathBuf::from("chunk.file");
let mut reader = ImmutableFile::open(&path).unwrap();
if let Some(block) = reader.next() {
println!("Block: {:?}", block.unwrap().header);
}
}
pallas-math – Math utilities for ledger / consensus
use pallas_math::slot_to_epoch;
fn main() {
let epoch = slot_to_epoch(1_000_000, 432_000);
println!("Epoch: {}", epoch); // ~2
}
pallas-utxorpc – UTxO‑RPC querying
use pallas_utxorpc::Client;
#[tokio::main]
async fn main() {
let client = Client::connect("grpc://node:50051").await.unwrap();
let tip = client.get_chain_tip().await.unwrap();
println!("Tip: {:?}", tip);
}
Conceptual Layers
Layer 1 – The Atoms
Low‑level rules of the universe: math, serialization, cryptography.
pallas-codec– CBOR (Concise Binary Object Representation) serialization. Cardano stores data in binary CBOR, not JSON.pallas-crypto– Blake2b‑256 hashing and Ed25519 signatures. Cardano prefers Blake2b‑256 for speed and security.pallas-math– Fixed‑point arithmetic. Consensus must avoid floating‑point errors (e.g.,0.1 + 0.2 != 0.3).
Layer 2 – The Data
Data structures that populate the blockchain.
pallas-primitives– Rust structs forTransactionBody,Block,Header, etc. Handles eras (Byron, Shelley, Alonzo, Babbage) where block shapes differ.pallas-addresses– Parses Bech32 addresses (addr1…) into payment and stake keys, validating checksums.
Layer 3 – The Tools
Libraries you use to read and write data.
pallas-traverse– Essential for reading chain data. ProvidesMultiEraBlock, enabling queries likeblock.tx_count().pallas-txbuilder,pallas-network,pallas-utxorpc,pallas-hardano, etc., give you the building blocks for constructing transactions, communicating with nodes, and interoperating with Haskell artifacts.
Easy to remember, powerful to use.
pallas-txbuilder
What: A helper to construct valid transaction binaries.
Why: It manages the complexity of UTXO inputs, fee calculation, and change addresses.
Layer 4 – The Infrastructure
These modules connect your code to the physical network.
| Module | What | Why |
|---|---|---|
pallas-network | Implements the Ouroboros mini‑protocols (Handshake, ChainSync, TxSubmission). | Allows Rust code to connect directly to Mainnet nodes via TCP. |
pallas-hardano | Reads raw ImmutableDB files directly from the hard drive. | Critical for high‑performance local indexing (used heavily by Mithril). |
pallas-utxorpc | A modern gRPC bridge to access blockchain data without managing Ouroboros state machines. | – |
The Transaction Lifecycle
The life of a transaction on the Cardano Mainnet.
- Creation – A wallet builds a transaction using
pallas-txbuilder(logic) andpallas-primitives(structs). - Submission – The wallet pushes the transaction to a local relay node using
pallas-network(TxSubmission protocol). - Propagation (Gossip) – Relay nodes check validity and “gossip” the transaction to the Slot Leader’s mempool.
- Consensus – The slot leader checks its VRF (Verifiable Random Function). If it wins the lottery, it mints a block.
- Distribution – The slot leader broadcasts the new block using
pallas-network(ChainSync protocol). - Observation – Your Pallas client downloads the block and decodes it using
pallas-traverse.