Aegis-OS: Industrial Intelligence HUD by Gemini 2.5-Flash
Source: Dev.to
Demo & Repository
- GitHub:
- Live demo:
Click the demo to upload a P&ID diagram, query the manual database, or chat with the AI assistant.
Deployment to Google Cloud Run
gcloud run deploy aegis-os \
--image gcr.io/qwiklabs-gcp-04-1def6ef2b7e7/aegis-os \
--platform managed \
--region us-east1 \
--allow-unauthenticated \
--port 8080 \
--set-secrets="NEXT_PUBLIC_GEMINI_API_KEY=GEMINI_API_KEY:latest,NEXT_PUBLIC_RAG_API_KEY=RAG_API_KEY:latest" \
--labels dev-tutorial=devnewyear2026
Deployment output
Deploying container to Cloud Run service [aegis-os] in project [qwiklabs-gcp-04-1def6ef2b7e7] region [us-east1]
✓ OK Deploying... Done.
✓ OK Creating Revision...
✓ OK Routing traffic...
✓ OK Setting IAM Policy...
Done.
Service [aegis-os] revision [aegis-os-00002-dft] has been deployed and is serving 100 percent of traffic.
Service URL: https://aegis-os-765925296978.us-east1.run.app
Deployment Components
- Multi‑stage Dockerfile with Next.js standalone builds
- Google Secret Manager for dual‑key API management (Gemini chat vs. RAG/Vision)
- IAM role Secret Accessor configured for the service account
- Container image:
gcr.io/qwiklabs-gcp-04-1def6ef2b7e7/aegis-os
Note: The Cloud Run deployment runs on a Qwiklabs sandbox. Because Pakistani bank cards are not accepted for Google Cloud billing, permanent hosting requires additional verification. The Vercel embed above provides full functionality for demonstration purposes.
Core Features
- P&ID Analysis – Upload engineering blueprints for instant component identification and risk assessment.
- Manual RAG Search – Query thousands of pages of technical documentation in seconds.
- 24/7 Industrial AI – Safety‑trained assistant for operational support.
Technical Stack
- Frontend: Next.js 15 + TypeScript
- Styling: Tailwind CSS + custom HUD animations
- AI: Google Gemini 2.5‑Flash (Vision + RAG + Chat)
- Deployment: Docker + Cloud Run + Secret Manager
- Architecture: Dual‑key API with 5‑tier retry logic
Multimodal Capabilities
Vision Analysis
// JavaScript – Gemini Vision
const visionModel = genAI.getGenerativeModel({ model: "gemini-2.5-flash" });
const result = await visionModel.generateContent([
{ inlineData: { data: base64Image, mimeType: "image/png" } },
{ text: "Analyze this P&ID diagram..." }
]);
RAG Implementation
// JavaScript – Retrieval‑Augmented Generation
const ragModel = getGenAI('rag').getGenerativeModel({ model: "gemini-2.5-flash" });
const chunks = await vectorSearch(query);
const context = chunks.join('\n');
const response = await ragModel.generateContent([
`Context: ${context}`,
`Query: ${query}`
]);
API Resilience
Designed for continuous industrial uptime with:
- Dual‑key isolation (separate keys for chat vs. RAG/Vision)
- Smart retry using exponential backoff
- Quota detection for daily vs. minute limits
// JavaScript – Quota‑aware retry logic
const isDailyLimit = errorMessage.includes("PerDay");
if (isDailyLimit) {
throw new Error("GEMINI_DAILY_LIMIT: Quota exhausted for 24h.");
}
const delay = extractWaitTime(error) || (5000 * Math.pow(2, attempt));
Industrial HUD Aesthetic
- Tactical polygon borders
- Biometric scan‑line animations
- SVG noise‑grain overlay
- RGB glitch effects
These visual cues are optimized for low‑light plant floors and help operators focus on critical information.
Learnings & Reusable Patterns
- API quota management:
skills/gemini-resilience.md - HUD component library:
skills/industrial-hud-design.md - Recovery protocols:
.agent/workflows/gemini-quota-recovery.md
Hashtags: #GoogleAIChallenge #GeminiAI #BuildWithAI #Industry40 #NextJS #CloudRun