Add Observability, Routing, and Failover to Your LLM Stack With One URL Change
Source: Dev.to
Bifrost is a high‑performance AI gateway that unifies access to 15+ providers (OpenAI, Anthropic, AWS Bedrock, Google Vertex, …) through a single OpenAI‑compatible API. Deploy in seconds with zero configuration and get automatic failover, load balancing, semantic caching, and enterprise‑grade observability.
Why Bifrost?
If your LLM application already works, you shouldn’t have to refactor it just to add:
- Observability
- Load balancing
- Caching
- Provider failover
Most solutions force you to:
- Rewrite API calls
- Learn a new SDK
- Refactor stable code
- Re‑test everything (risky & expensive)
Bifrost avoids all that. Drop it in, change one URL, and you’re done.
Quick Start
Go from zero to a production‑ready AI gateway in under a minute.
| Step | Command |
|---|---|
| 1️⃣ Start Bifrost Gateway | Install & run locally bash\nnpx -y @maximhq/bifrost\nOr use Docker bash\ndocker run -p 8080:8080 maximhq/bifrost\n |
| 2️⃣ Configure via Web UI | Open the built‑in interface: bash\nopen http://localhost:8080\n |
| 3️⃣ Make your first API call | bash\ncurl -X POST http://localhost:8080/v1/chat/completions \\\n -H \"Content-Type: application/json\" \\\n -d '{\n \"model\": \"openai/gpt-4o-mini\",\n \"messages\": [{\"role\": \"user\", \"content\": \"Hello, Bifrost!\"}]\n }'\n |
That’s it – your AI gateway is running with a web UI for visual configuration and real‑time monitoring.
OpenAI‑Compatible – One‑Line Change
If your code already works with OpenAI, it works with Bifrost.
import openai
# Original OpenAI usage
openai.api_key = "sk-..."
response = openai.ChatCompletion.create(
model="gpt-4",
messages=[{"role": "user", "content": "Hello"}]
)
# 👉 Switch to Bifrost – only the base URL changes
openai.api_base = "http://localhost:8080/openai"
openai.api_key = "sk-..."
response = openai.ChatCompletion.create(
model="gpt-4",
messages=[{"role": "user", "content": "Hello"}]
)
Everything else stays the same. Because Bifrost is OpenAI‑compatible, it works with any framework that already supports OpenAI.
LangChain
from langchain.chat_models import ChatOpenAI
llm = ChatOpenAI(
openai_api_base="http://localhost:8080/langchain",
openai_api_key="sk-..."
)
LlamaIndex
from llama_index.llms import OpenAI
llm = OpenAI(
api_base="http://localhost:8080/openai",
api_key="sk-..."
)
LiteLLM
import litellm
response = litellm.completion(
model="gpt-4",
messages=[{"role": "user", "content": "Hello"}],
base_url="http://localhost:8080/litellm"
)
Anthropic SDK
import anthropic
client = anthropic.Anthropic(
base_url="http://localhost:8080/anthropic",
api_key="sk-ant-..."
)
Pattern: update the base URL, keep the rest of your code unchanged.
Multi‑Provider Routing
Define providers in a single JSON/YAML config. Bifrost routes requests to the appropriate backend based on the model name.
{
"providers": [
{
"name": "openai",
"api_key": "sk-...",
"models": ["gpt-4", "gpt-4o-mini"]
},
{
"name": "anthropic",
"api_key": "sk-ant-...",
"models": ["claude-sonnet-4", "claude-opus-4"]
},
{
"name": "azure",
"api_key": "...",
"endpoint": "https://your-resource.openai.azure.com"
}
]
}
# Routes to OpenAI
response = client.chat.completions.create(
model="gpt-4",
messages=[...]
)
# Routes to Anthropic
response = client.chat_completions.create(
model="anthropic/claude-sonnet-4",
messages=[...]
)
Switch providers simply by changing the model name – no refactoring required.
Built‑In Observability
Plugins (e.g., Maxim)
{
"plugins": [
{
"name": "maxim",
"config": {
"api_key": "your-maxim-key",
"repo_id": "your-repo-id"
}
}
]
}
Every request is automatically traced in the Maxim dashboard – no instrumentation code needed.
Metrics (Prometheus)
{
"metrics": {
"enabled": true,
"port": 9090
}
}
Metrics are exposed at /metrics and can be scraped by Prometheus.
OpenTelemetry (OTLP)
{
"otel": {
"enabled": true,
"endpoint": "http://your-collector:4318"
}
}
Standard OTLP export to any OpenTelemetry‑compatible collector.
Provider‑Specific Example (Claude)
{
"baseURL": "http://localhost:8080/openai",
"provider": "anthropic"
}
All Claude requests now flow through Bifrost, enabling cost tracking, token usage, and caching.
custom:
- name: "Bifrost"
apiKey: "dummy"
baseURL: "http://localhost:8080/v1"
models:
default: ["openai/gpt-4o"]
Model Context Protocol (MCP) – Tool Calling & Shared Context
{
"mcp": {
"servers": [
{
"name": "filesystem",
"command": "npx",
"args": ["-y", "@modelcontextprotocol/server-filesystem"]
},
{
"name": "brave-search",
"command": "npx",
"args": ["-y", "@modelcontextprotocol/server-brave-search"],
"env": {
"BRAVE_API_KEY": "your-key"
}
}
]
}
}
Once configured, your LLM calls automatically gain access to MCP tools.
Deployment Examples
Docker (quick test)
docker run -p 8080:8080 \
-e OPENAI_API_KEY=sk-... \
maximhq/bifrost:latest
Docker‑Compose
services:
bifrost:
image: maximhq/bifrost:latest
ports:
- "8080:8080"
environment:
- OPENAI_API_KEY=sk-...
volumes:
- ./data:/app/data
Kubernetes
apiVersion: apps/v1
kind: Deployment
metadata:
name: bifrost
spec:
replicas: 3
selector:
matchLabels:
app: bifrost
template:
metadata:
labels:
app: bifrost
spec:
containers:
- name: bifrost
image: maximhq/bifrost:latest
ports:
- containerPort: 8080
Terraform
See the official documentation for full examples.
Summary
| Feature | Status |
|---|---|
| Observability | ✅ (auto‑traced, metrics, OTLP) |
| Semantic Caching | ✅ |
| Multi‑Key Load Balancing | ✅ |
| Provider Failover | ✅ |
| MCP Tool Calling | ✅ |
| One‑Line Integration | ✅ |
Migration steps (≈10 minutes):
- Run Bifrost.
- Add provider API keys (via UI or config).
- Update the base URL in your code.
- Test a single request.
- Deploy (Docker, K8s, etc.).
All features are enabled automatically – no code changes beyond the URL. Enjoy a resilient, observable, and scalable LLM stack with zero refactoring.
Quick Integration Checklist
- OpenAI‑compatible API
- One URL change
- Multi‑provider routing
- Built‑in observability
- No refactoring required
- No new SDKs
- No code rewrites
Just drop it in.
Built by the team at Maxim AI.